缺陷绿色化:利用纳米材料中的缺陷实现可再生能源和环境可持续性

IF 4.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Addis S. Fuhr, B. Sumpter, Panchapakesan Ganesh
{"title":"缺陷绿色化:利用纳米材料中的缺陷实现可再生能源和环境可持续性","authors":"Addis S. Fuhr, B. Sumpter, Panchapakesan Ganesh","doi":"10.3389/fnano.2023.1291338","DOIUrl":null,"url":null,"abstract":"Induction of point defects in nanomaterials can bestow upon them entirely new physics or augment their pre-existing physical properties, thereby expanding their potential use in green energy technology. Predicting structure-property relationships for defects a priori is challenging, and developing methods for precise control of defect type, density, or structural distribution during synthesis is an even more formidable task. Hence, tuning the defect structure to tailor nanomaterials for enhanced device performance remains an underutilized tool in materials design. We review here the state of nanomaterial design through the lens of computational prediction of defect properties for green energy technology, and synthesis methods to control defect formation for optimal performance. We illustrate the efficacy of defect-focused approaches for refining nanomaterial physics by describing several specific applications where these techniques hold potential. Most notably, we focus on quantum dots for reabsorption-free solar windows and net-zero emission buildings, oxide cathodes for high energy density lithium-ion batteries and electric vehicles, and transition metal dichalcogenides for electrocatalytic green hydrogen production and carbon-free fuels.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":"40 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defects go green: using defects in nanomaterials for renewable energy and environmental sustainability\",\"authors\":\"Addis S. Fuhr, B. Sumpter, Panchapakesan Ganesh\",\"doi\":\"10.3389/fnano.2023.1291338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Induction of point defects in nanomaterials can bestow upon them entirely new physics or augment their pre-existing physical properties, thereby expanding their potential use in green energy technology. Predicting structure-property relationships for defects a priori is challenging, and developing methods for precise control of defect type, density, or structural distribution during synthesis is an even more formidable task. Hence, tuning the defect structure to tailor nanomaterials for enhanced device performance remains an underutilized tool in materials design. We review here the state of nanomaterial design through the lens of computational prediction of defect properties for green energy technology, and synthesis methods to control defect formation for optimal performance. We illustrate the efficacy of defect-focused approaches for refining nanomaterial physics by describing several specific applications where these techniques hold potential. Most notably, we focus on quantum dots for reabsorption-free solar windows and net-zero emission buildings, oxide cathodes for high energy density lithium-ion batteries and electric vehicles, and transition metal dichalcogenides for electrocatalytic green hydrogen production and carbon-free fuels.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":\"40 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2023.1291338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2023.1291338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在纳米材料中诱导点缺陷可以赋予其全新的物理特性或增强其原有的物理特性,从而扩大其在绿色能源技术中的潜在用途。先验地预测缺陷的结构-性能关系具有挑战性,而开发在合成过程中精确控制缺陷类型、密度或结构分布的方法则是一项更为艰巨的任务。因此,通过调整缺陷结构来定制纳米材料以提高器件性能仍然是材料设计中一个未得到充分利用的工具。在此,我们从计算预测绿色能源技术的缺陷特性以及控制缺陷形成以实现最佳性能的合成方法的角度,回顾了纳米材料设计的现状。我们通过描述这些技术具有潜力的几个具体应用,说明了以缺陷为重点的方法在完善纳米材料物理方面的功效。最值得注意的是,我们重点研究了用于无再吸收太阳能窗和净零排放建筑的量子点、用于高能量密度锂离子电池和电动汽车的氧化物阴极,以及用于电催化绿色制氢和无碳燃料的过渡金属二钙化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defects go green: using defects in nanomaterials for renewable energy and environmental sustainability
Induction of point defects in nanomaterials can bestow upon them entirely new physics or augment their pre-existing physical properties, thereby expanding their potential use in green energy technology. Predicting structure-property relationships for defects a priori is challenging, and developing methods for precise control of defect type, density, or structural distribution during synthesis is an even more formidable task. Hence, tuning the defect structure to tailor nanomaterials for enhanced device performance remains an underutilized tool in materials design. We review here the state of nanomaterial design through the lens of computational prediction of defect properties for green energy technology, and synthesis methods to control defect formation for optimal performance. We illustrate the efficacy of defect-focused approaches for refining nanomaterial physics by describing several specific applications where these techniques hold potential. Most notably, we focus on quantum dots for reabsorption-free solar windows and net-zero emission buildings, oxide cathodes for high energy density lithium-ion batteries and electric vehicles, and transition metal dichalcogenides for electrocatalytic green hydrogen production and carbon-free fuels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Nanotechnology
Frontiers in Nanotechnology Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
96
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信