Yuri Shklyaev, O. Dizer, Tatyana Lugovitskaya, D. Golovkin, Denis Rogozhnikov
{"title":"用硝酸浸出辉锑矿和黄铜矿的动力学原理","authors":"Yuri Shklyaev, O. Dizer, Tatyana Lugovitskaya, D. Golovkin, Denis Rogozhnikov","doi":"10.15826/chimtech.2023.10.4.10","DOIUrl":null,"url":null,"abstract":"The paper presents a study of the process of nitric acid dissolution of the natural minerals chalcopyrite and bornite. The influence of various parameters, including temperature, nitric acid concentration and particle sizes, on this process was examined. Based on the data obtained, the values of apparent activation energy (57.41 and 42.98 kJ/mol for chalcopyrite and bornite, respectively), empirical orders with respect to nitric acid (1.62 and 1.57 for chalcopyrite and bornite, respectively) and with respect to particle size (–1.16 and –2.53 for chalcopyrite and bornite, respectively) were calculated using the shrinking core model. Generalized kinetic equations for the dissolution process of both minerals were derived. Based on the calculations performed, it was suggested that the dissolution processes of chalcopyrite and bornite under these conditions are limited by internal diffusion.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":"77 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of nitric acid leaching of bornite and chalcopyrite\",\"authors\":\"Yuri Shklyaev, O. Dizer, Tatyana Lugovitskaya, D. Golovkin, Denis Rogozhnikov\",\"doi\":\"10.15826/chimtech.2023.10.4.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a study of the process of nitric acid dissolution of the natural minerals chalcopyrite and bornite. The influence of various parameters, including temperature, nitric acid concentration and particle sizes, on this process was examined. Based on the data obtained, the values of apparent activation energy (57.41 and 42.98 kJ/mol for chalcopyrite and bornite, respectively), empirical orders with respect to nitric acid (1.62 and 1.57 for chalcopyrite and bornite, respectively) and with respect to particle size (–1.16 and –2.53 for chalcopyrite and bornite, respectively) were calculated using the shrinking core model. Generalized kinetic equations for the dissolution process of both minerals were derived. Based on the calculations performed, it was suggested that the dissolution processes of chalcopyrite and bornite under these conditions are limited by internal diffusion.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":\"77 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2023.10.4.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.4.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Kinetics of nitric acid leaching of bornite and chalcopyrite
The paper presents a study of the process of nitric acid dissolution of the natural minerals chalcopyrite and bornite. The influence of various parameters, including temperature, nitric acid concentration and particle sizes, on this process was examined. Based on the data obtained, the values of apparent activation energy (57.41 and 42.98 kJ/mol for chalcopyrite and bornite, respectively), empirical orders with respect to nitric acid (1.62 and 1.57 for chalcopyrite and bornite, respectively) and with respect to particle size (–1.16 and –2.53 for chalcopyrite and bornite, respectively) were calculated using the shrinking core model. Generalized kinetic equations for the dissolution process of both minerals were derived. Based on the calculations performed, it was suggested that the dissolution processes of chalcopyrite and bornite under these conditions are limited by internal diffusion.