{"title":"以椰壳为粘合剂的碳化榴莲皮生物压块的特性分析","authors":"G. Soeherman, Pridata Gina Putri, Deary Amenthy Zahrotinufus Joen, Iyan Indrawan, Nurma Pratiwi","doi":"10.29165/ajarcde.v7i3.347","DOIUrl":null,"url":null,"abstract":"This research aimed to study the characteristics of carbonized durian peel biobriquette using tar as a binder. A 1:10 ratio of binder and carbonized durian peel was used. The 25, 50, and 75% (coded as P1, P2, and P3, respectively) tar were used as a binder alongside tapioca flour to produce a binder with different tar concentrations. The briquette characteristics determined moisture content, ash content, calorific value, density, and water-absorbing capacity. Moisture content ranged from 9.32% to 9,41% for treatments P1 to P3, while the ash content ranged from 12,29% to 13,09%, showing no significant difference among the treatments. Massive difference was observed in calorific value, as P1 gives 5106/35 cal g-1 calorific value while P2 and P3 give 9267.56 and 9694.53 cal g-1, respectively. The density observed was relatively low, ranging from 0.5029 g cm-3 to 0,5685 g cm-2. As for water-absorbing capacity, P3 absorbed the least amount of water, 29.43%. From this research, we can conclude that coconut shell tar has the potential to be utilized as a binder in forming biobriquette from carbonized durian peel.","PeriodicalId":426418,"journal":{"name":"AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment)","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Biobriquette from Carbonized Durian Peel Using Coconut Shell as the Binder\",\"authors\":\"G. Soeherman, Pridata Gina Putri, Deary Amenthy Zahrotinufus Joen, Iyan Indrawan, Nurma Pratiwi\",\"doi\":\"10.29165/ajarcde.v7i3.347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aimed to study the characteristics of carbonized durian peel biobriquette using tar as a binder. A 1:10 ratio of binder and carbonized durian peel was used. The 25, 50, and 75% (coded as P1, P2, and P3, respectively) tar were used as a binder alongside tapioca flour to produce a binder with different tar concentrations. The briquette characteristics determined moisture content, ash content, calorific value, density, and water-absorbing capacity. Moisture content ranged from 9.32% to 9,41% for treatments P1 to P3, while the ash content ranged from 12,29% to 13,09%, showing no significant difference among the treatments. Massive difference was observed in calorific value, as P1 gives 5106/35 cal g-1 calorific value while P2 and P3 give 9267.56 and 9694.53 cal g-1, respectively. The density observed was relatively low, ranging from 0.5029 g cm-3 to 0,5685 g cm-2. As for water-absorbing capacity, P3 absorbed the least amount of water, 29.43%. From this research, we can conclude that coconut shell tar has the potential to be utilized as a binder in forming biobriquette from carbonized durian peel.\",\"PeriodicalId\":426418,\"journal\":{\"name\":\"AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment)\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29165/ajarcde.v7i3.347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29165/ajarcde.v7i3.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Biobriquette from Carbonized Durian Peel Using Coconut Shell as the Binder
This research aimed to study the characteristics of carbonized durian peel biobriquette using tar as a binder. A 1:10 ratio of binder and carbonized durian peel was used. The 25, 50, and 75% (coded as P1, P2, and P3, respectively) tar were used as a binder alongside tapioca flour to produce a binder with different tar concentrations. The briquette characteristics determined moisture content, ash content, calorific value, density, and water-absorbing capacity. Moisture content ranged from 9.32% to 9,41% for treatments P1 to P3, while the ash content ranged from 12,29% to 13,09%, showing no significant difference among the treatments. Massive difference was observed in calorific value, as P1 gives 5106/35 cal g-1 calorific value while P2 and P3 give 9267.56 and 9694.53 cal g-1, respectively. The density observed was relatively low, ranging from 0.5029 g cm-3 to 0,5685 g cm-2. As for water-absorbing capacity, P3 absorbed the least amount of water, 29.43%. From this research, we can conclude that coconut shell tar has the potential to be utilized as a binder in forming biobriquette from carbonized durian peel.