{"title":"通过有限元和田口方法优化 PBGA 组件的热循环可靠性设计","authors":"Chao Gao, Chunyue Huang, Ying Liang","doi":"10.1115/1.4064097","DOIUrl":null,"url":null,"abstract":"A finite element simulation analysis model was developed for a PBGA assembly to analyze its behavior under thermal cyclic loading conditions. The stress distribution in the SAC305 solder joints at different locations within the array was investigated by using ANAND constitutive equations. Subsequently, the thermal fatigue life of the key solder joints was quantified. The study also examined the influence of the solder joint diameter, substrate thickness, solder joint height, PCB thickness, and mold compound height on solder joint stress. Optimization of assembly parameters was achieved through the application of the Taguchi method. An extensive analysis was conducted using different assembly parameter combinations, employing the L9(34) orthogonal array design to explore the thermal cycling effects. The computed average Von Mises stress Δσ for the critical thin-layer elements of solder joints located in hazardous positions within the assembly was notably affected by variations in the solder joint height, substrate thickness, solder joint diameter, and mold compound height. This impact ranked in descending order of significance as solder joint height, substrate thickness, solder joint diameter, and mold compound height. The optimal parameter combination determined was a solder joint height of 0.70 mm, a solder joint diameter of 0.85 mm, a substrate thickness of 0.51 mm, and a mold compound height of 1.12 mm. Implementing this optimized configuration led to a significant 4.07% reduction in average stress ?? for the critical thin-layer elements within hazardous solder joints. Moreover, the extension of the thermal fatigue life was notably improved, achieving an impressive 51.72% increase.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":"25 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Design of Thermal Cycling Reliability For PBGA Assembly via FEM and Taguchi Method\",\"authors\":\"Chao Gao, Chunyue Huang, Ying Liang\",\"doi\":\"10.1115/1.4064097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite element simulation analysis model was developed for a PBGA assembly to analyze its behavior under thermal cyclic loading conditions. The stress distribution in the SAC305 solder joints at different locations within the array was investigated by using ANAND constitutive equations. Subsequently, the thermal fatigue life of the key solder joints was quantified. The study also examined the influence of the solder joint diameter, substrate thickness, solder joint height, PCB thickness, and mold compound height on solder joint stress. Optimization of assembly parameters was achieved through the application of the Taguchi method. An extensive analysis was conducted using different assembly parameter combinations, employing the L9(34) orthogonal array design to explore the thermal cycling effects. The computed average Von Mises stress Δσ for the critical thin-layer elements of solder joints located in hazardous positions within the assembly was notably affected by variations in the solder joint height, substrate thickness, solder joint diameter, and mold compound height. This impact ranked in descending order of significance as solder joint height, substrate thickness, solder joint diameter, and mold compound height. The optimal parameter combination determined was a solder joint height of 0.70 mm, a solder joint diameter of 0.85 mm, a substrate thickness of 0.51 mm, and a mold compound height of 1.12 mm. Implementing this optimized configuration led to a significant 4.07% reduction in average stress ?? for the critical thin-layer elements within hazardous solder joints. Moreover, the extension of the thermal fatigue life was notably improved, achieving an impressive 51.72% increase.\",\"PeriodicalId\":15663,\"journal\":{\"name\":\"Journal of Electronic Packaging\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Packaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064097\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimal Design of Thermal Cycling Reliability For PBGA Assembly via FEM and Taguchi Method
A finite element simulation analysis model was developed for a PBGA assembly to analyze its behavior under thermal cyclic loading conditions. The stress distribution in the SAC305 solder joints at different locations within the array was investigated by using ANAND constitutive equations. Subsequently, the thermal fatigue life of the key solder joints was quantified. The study also examined the influence of the solder joint diameter, substrate thickness, solder joint height, PCB thickness, and mold compound height on solder joint stress. Optimization of assembly parameters was achieved through the application of the Taguchi method. An extensive analysis was conducted using different assembly parameter combinations, employing the L9(34) orthogonal array design to explore the thermal cycling effects. The computed average Von Mises stress Δσ for the critical thin-layer elements of solder joints located in hazardous positions within the assembly was notably affected by variations in the solder joint height, substrate thickness, solder joint diameter, and mold compound height. This impact ranked in descending order of significance as solder joint height, substrate thickness, solder joint diameter, and mold compound height. The optimal parameter combination determined was a solder joint height of 0.70 mm, a solder joint diameter of 0.85 mm, a substrate thickness of 0.51 mm, and a mold compound height of 1.12 mm. Implementing this optimized configuration led to a significant 4.07% reduction in average stress ?? for the critical thin-layer elements within hazardous solder joints. Moreover, the extension of the thermal fatigue life was notably improved, achieving an impressive 51.72% increase.
期刊介绍:
The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems.
Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.