探索和分析纳米粒子的系统输送障碍

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lin Wang, Skyler Quine, Alex N. Frickenstein, Michael Lee, Wen Yang, Vinit M. Sheth, Margaret D. Bourlon, Yuxin He, Shanxin Lyu, Lucila Garcia-Contreras, Yan D. Zhao, Stefan Wilhelm
{"title":"探索和分析纳米粒子的系统输送障碍","authors":"Lin Wang,&nbsp;Skyler Quine,&nbsp;Alex N. Frickenstein,&nbsp;Michael Lee,&nbsp;Wen Yang,&nbsp;Vinit M. Sheth,&nbsp;Margaret D. Bourlon,&nbsp;Yuxin He,&nbsp;Shanxin Lyu,&nbsp;Lucila Garcia-Contreras,&nbsp;Yan D. Zhao,&nbsp;Stefan Wilhelm","doi":"10.1002/adfm.202308446","DOIUrl":null,"url":null,"abstract":"<p>Most nanomedicines require efficient in vivo delivery to elicit meaningful diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, the term “nanoparticle blood removal pathways” (NBRP) is proposed, which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. Nanoparticle design and biological modulation strategies are reviewed to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, the preclinical literature from 2011–2021 is studied, and the nanoparticle blood circulation and organ biodistribution data are analyzed. The findings reveal that nanoparticle surface chemistry affects the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improves the blood area under the curve by ≈418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 8","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles\",\"authors\":\"Lin Wang,&nbsp;Skyler Quine,&nbsp;Alex N. Frickenstein,&nbsp;Michael Lee,&nbsp;Wen Yang,&nbsp;Vinit M. Sheth,&nbsp;Margaret D. Bourlon,&nbsp;Yuxin He,&nbsp;Shanxin Lyu,&nbsp;Lucila Garcia-Contreras,&nbsp;Yan D. Zhao,&nbsp;Stefan Wilhelm\",\"doi\":\"10.1002/adfm.202308446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most nanomedicines require efficient in vivo delivery to elicit meaningful diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, the term “nanoparticle blood removal pathways” (NBRP) is proposed, which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. Nanoparticle design and biological modulation strategies are reviewed to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, the preclinical literature from 2011–2021 is studied, and the nanoparticle blood circulation and organ biodistribution data are analyzed. The findings reveal that nanoparticle surface chemistry affects the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improves the blood area under the curve by ≈418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 8\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202308446\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202308446","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大多数纳米药物都需要高效的体内给药才能产生有意义的诊断和治疗效果。然而,系统给药的纳米粒子在到达预定组织的途中往往会遇到输送障碍。为了描述这些障碍,提出了 "纳米颗粒血液清除途径"(NBRP)一词,该词概括了纳米颗粒与机体各种依赖细胞和不依赖细胞的血液清除机制之间的相互作用。综述了减轻纳米粒子与 NBRP 相互作用的纳米粒子设计和生物调节策略。由于这些相互作用会影响纳米粒子的递送,因此研究了 2011-2021 年的临床前文献,并分析了纳米粒子的血液循环和器官生物分布数据。研究结果表明,与其他纳米粒子设计参数相比,纳米粒子表面化学对其体内行为的影响更大。生物-聚乙二醇(PEG)组合表面改性使血液曲线下面积提高了≈418%,肝脏蓄积降低了47%。加深对纳米粒子-NBRP相互作用及相关给药趋势的了解,将为更安全、更有效、更高效的纳米药物提供新的纳米粒子设计和生物调节策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles

Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles

Most nanomedicines require efficient in vivo delivery to elicit meaningful diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, the term “nanoparticle blood removal pathways” (NBRP) is proposed, which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. Nanoparticle design and biological modulation strategies are reviewed to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, the preclinical literature from 2011–2021 is studied, and the nanoparticle blood circulation and organ biodistribution data are analyzed. The findings reveal that nanoparticle surface chemistry affects the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improves the blood area under the curve by ≈418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信