{"title":"制定用于生境恢复项目的大型无脊椎动物群落指标的生境适宜性标准","authors":"Mark Gard","doi":"10.51492/cfwj.109.14","DOIUrl":null,"url":null,"abstract":"Community-based macroinvertebrate habitat suitability criteria are needed for two reasons: (1) community-based criteria, such as with macroinvertebrates, are a better measure of ecosystem health than single-species habitat suitability criteria (HSC); and (2) if food rather than physical habitat is the limiting factor for juvenile salmonids, it is better to evaluate habitat restoration projects based on macroinvertebrate habitat than juvenile habitat. The goal of this study was to generate habitat suitability criteria for macroinvertebrates in the Sacramento River. Habitat suitability criteria were derived for three macroinvertebrate community metrics. One of the metrics (biomass of baetids, chironomids and hydropsychids) was selected to represent food supply for juvenile salmonids, while the other two metrics (total biomass and diversity) were selected as measures of ecosystem health. Baetidae, Chironomidae and Hydropsychidae were chosen because they are the dominant taxa present in stomach contents samples of Sacramento River juvenile Chinook Salmon Oncorhynchus tschawytscha. Habitat suitability criteria were developed using data from 75 macroinvertebrate samples stratified by season, mesohabitat type, depth, velocity, and substrate. The criteria for depth, velocity and substrate were developed taking into account several potential confounding variables, and using a polynomial regression for depth and velocity, and analysis of variance for substrate (a categorical variable). The criteria showed no effect of substrate on baetid/chironomid/hydropsychid biomass or diversity. Criteria for total biomass showed a higher suitability for larger cobbles, versus other substrates, for total biomass. The optimum depths for baetid/chironomid/hydropsychid biomass, total biomass and diversity were, respectively, 0.82–0.85 m, 0.61–0.67 m and 1.16–1.19 m. The optimum velocities for baetid/chironomid/hydropsychid biomass, total biomass and diversity were, respectively, 0.73–0.79 m/sec, 0.61–0.67 m/sec, and 0.61–0.73 m/s. Suggestions for development of future macroinvertebrate HSC include: (1) stratifying sampling by depth, velocity and substrate; (2) measuring the amount of organic matter in samples for use as an additional potential confounding factor; and (3) sampling a large area (0.84 m2) with a sampler with a rubber foam lining on the bottom of the sampler.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of habitat suitability criteria for macroinvertebrate community metrics for use in habitat restoration projects\",\"authors\":\"Mark Gard\",\"doi\":\"10.51492/cfwj.109.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community-based macroinvertebrate habitat suitability criteria are needed for two reasons: (1) community-based criteria, such as with macroinvertebrates, are a better measure of ecosystem health than single-species habitat suitability criteria (HSC); and (2) if food rather than physical habitat is the limiting factor for juvenile salmonids, it is better to evaluate habitat restoration projects based on macroinvertebrate habitat than juvenile habitat. The goal of this study was to generate habitat suitability criteria for macroinvertebrates in the Sacramento River. Habitat suitability criteria were derived for three macroinvertebrate community metrics. One of the metrics (biomass of baetids, chironomids and hydropsychids) was selected to represent food supply for juvenile salmonids, while the other two metrics (total biomass and diversity) were selected as measures of ecosystem health. Baetidae, Chironomidae and Hydropsychidae were chosen because they are the dominant taxa present in stomach contents samples of Sacramento River juvenile Chinook Salmon Oncorhynchus tschawytscha. Habitat suitability criteria were developed using data from 75 macroinvertebrate samples stratified by season, mesohabitat type, depth, velocity, and substrate. The criteria for depth, velocity and substrate were developed taking into account several potential confounding variables, and using a polynomial regression for depth and velocity, and analysis of variance for substrate (a categorical variable). The criteria showed no effect of substrate on baetid/chironomid/hydropsychid biomass or diversity. Criteria for total biomass showed a higher suitability for larger cobbles, versus other substrates, for total biomass. The optimum depths for baetid/chironomid/hydropsychid biomass, total biomass and diversity were, respectively, 0.82–0.85 m, 0.61–0.67 m and 1.16–1.19 m. The optimum velocities for baetid/chironomid/hydropsychid biomass, total biomass and diversity were, respectively, 0.73–0.79 m/sec, 0.61–0.67 m/sec, and 0.61–0.73 m/s. Suggestions for development of future macroinvertebrate HSC include: (1) stratifying sampling by depth, velocity and substrate; (2) measuring the amount of organic matter in samples for use as an additional potential confounding factor; and (3) sampling a large area (0.84 m2) with a sampler with a rubber foam lining on the bottom of the sampler.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51492/cfwj.109.14\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51492/cfwj.109.14","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of habitat suitability criteria for macroinvertebrate community metrics for use in habitat restoration projects
Community-based macroinvertebrate habitat suitability criteria are needed for two reasons: (1) community-based criteria, such as with macroinvertebrates, are a better measure of ecosystem health than single-species habitat suitability criteria (HSC); and (2) if food rather than physical habitat is the limiting factor for juvenile salmonids, it is better to evaluate habitat restoration projects based on macroinvertebrate habitat than juvenile habitat. The goal of this study was to generate habitat suitability criteria for macroinvertebrates in the Sacramento River. Habitat suitability criteria were derived for three macroinvertebrate community metrics. One of the metrics (biomass of baetids, chironomids and hydropsychids) was selected to represent food supply for juvenile salmonids, while the other two metrics (total biomass and diversity) were selected as measures of ecosystem health. Baetidae, Chironomidae and Hydropsychidae were chosen because they are the dominant taxa present in stomach contents samples of Sacramento River juvenile Chinook Salmon Oncorhynchus tschawytscha. Habitat suitability criteria were developed using data from 75 macroinvertebrate samples stratified by season, mesohabitat type, depth, velocity, and substrate. The criteria for depth, velocity and substrate were developed taking into account several potential confounding variables, and using a polynomial regression for depth and velocity, and analysis of variance for substrate (a categorical variable). The criteria showed no effect of substrate on baetid/chironomid/hydropsychid biomass or diversity. Criteria for total biomass showed a higher suitability for larger cobbles, versus other substrates, for total biomass. The optimum depths for baetid/chironomid/hydropsychid biomass, total biomass and diversity were, respectively, 0.82–0.85 m, 0.61–0.67 m and 1.16–1.19 m. The optimum velocities for baetid/chironomid/hydropsychid biomass, total biomass and diversity were, respectively, 0.73–0.79 m/sec, 0.61–0.67 m/sec, and 0.61–0.73 m/s. Suggestions for development of future macroinvertebrate HSC include: (1) stratifying sampling by depth, velocity and substrate; (2) measuring the amount of organic matter in samples for use as an additional potential confounding factor; and (3) sampling a large area (0.84 m2) with a sampler with a rubber foam lining on the bottom of the sampler.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.