Paul Joseph, Malavika Arun, Khalid A. M. Moinuddin
{"title":"关于原型系统对碳氢化合物扩散火焰灭火效果的初步研究","authors":"Paul Joseph, Malavika Arun, Khalid A. M. Moinuddin","doi":"10.1177/07349041231213234","DOIUrl":null,"url":null,"abstract":"We have investigated the use of a novel dual-stage firefighting strategy, where an inert gas is deployed as a carrier agent to discharge foamed water, obtained by mixing environmentally friendly surface-active agents. Here we also report specifically on some in-house built practical strategies. With a view to gauging the relative fire suppression efficacies of the selected agents, each one was discharged as a fine spray onto fires involving hexane, and also optionally where a typical Li-ion battery electrolyte acted as the fuel. In summary, it can be inferred that the air- or nitrogen-detergent formulations showed enhanced fire suppression attributes, in small-scale experiments, as compared with the aqueous medium alone. Furthermore, in almost all cases, the fire extinction property can be attributed mainly to the physical phenomena, produced by the flow of the inert gas, or air and enhanced wettability of the medium. Given that the fire tests were done at a relatively small scale, no definite conclusions can be drawn than those provided above; however, this study warrants further investigation, especially, at a larger scale.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"32 4","pages":"63 - 85"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A preliminary study on the fire suppression efficacy of a prototype system on hydrocarbon-based diffusion flames\",\"authors\":\"Paul Joseph, Malavika Arun, Khalid A. M. Moinuddin\",\"doi\":\"10.1177/07349041231213234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the use of a novel dual-stage firefighting strategy, where an inert gas is deployed as a carrier agent to discharge foamed water, obtained by mixing environmentally friendly surface-active agents. Here we also report specifically on some in-house built practical strategies. With a view to gauging the relative fire suppression efficacies of the selected agents, each one was discharged as a fine spray onto fires involving hexane, and also optionally where a typical Li-ion battery electrolyte acted as the fuel. In summary, it can be inferred that the air- or nitrogen-detergent formulations showed enhanced fire suppression attributes, in small-scale experiments, as compared with the aqueous medium alone. Furthermore, in almost all cases, the fire extinction property can be attributed mainly to the physical phenomena, produced by the flow of the inert gas, or air and enhanced wettability of the medium. Given that the fire tests were done at a relatively small scale, no definite conclusions can be drawn than those provided above; however, this study warrants further investigation, especially, at a larger scale.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":\"32 4\",\"pages\":\"63 - 85\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/07349041231213234\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041231213234","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A preliminary study on the fire suppression efficacy of a prototype system on hydrocarbon-based diffusion flames
We have investigated the use of a novel dual-stage firefighting strategy, where an inert gas is deployed as a carrier agent to discharge foamed water, obtained by mixing environmentally friendly surface-active agents. Here we also report specifically on some in-house built practical strategies. With a view to gauging the relative fire suppression efficacies of the selected agents, each one was discharged as a fine spray onto fires involving hexane, and also optionally where a typical Li-ion battery electrolyte acted as the fuel. In summary, it can be inferred that the air- or nitrogen-detergent formulations showed enhanced fire suppression attributes, in small-scale experiments, as compared with the aqueous medium alone. Furthermore, in almost all cases, the fire extinction property can be attributed mainly to the physical phenomena, produced by the flow of the inert gas, or air and enhanced wettability of the medium. Given that the fire tests were done at a relatively small scale, no definite conclusions can be drawn than those provided above; however, this study warrants further investigation, especially, at a larger scale.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).