腹腔镜结肠切除术中的手术缝合器:创新灵活设计的新视角

IF 2.9 Q2 ROBOTICS
Robotics Pub Date : 2023-11-21 DOI:10.3390/robotics12060156
Dhruva Khanzode, R. Jha, Alexandra Thomieres, Emilie Duchalais, Damien Chablat
{"title":"腹腔镜结肠切除术中的手术缝合器:创新灵活设计的新视角","authors":"Dhruva Khanzode, R. Jha, Alexandra Thomieres, Emilie Duchalais, Damien Chablat","doi":"10.3390/robotics12060156","DOIUrl":null,"url":null,"abstract":"This article describes the development of a flexible surgical stapler mechanism, which serves as a fundamental tool for laparoscopic rectal cancer surgery, addressing the challenges posed by difficult types of accessibility using conventional instruments. The design of this mechanism involves the incorporation of a stacked tensegrity structure, in which a flexible beam serves as the central spine. To assess the stapler’s range of operation, an analysis of the workspace was conducted by examining collaborative Computed Tomography (CT) scan data obtained from different perspectives (Axial, Coronal, and Sagittal planes) at various intervals. By synthesizing kinematic equations, Hooke’s law was employed, taking into account rotational springs and bending moments. This allowed for precise control of the mechanism’s movements during surgical procedures in the rectal region. Additionally, the study examined the singularities and simulations of the tensegrity mechanism, considering the influential eyelet friction parameter. Notably, the research revealed that this friction parameter can alter the mechanism’s curvature, underscoring the importance of accurate analysis. To establish a correlation between the virtual and physical models, a preliminary design was presented, facilitating the identification of the friction parameter.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"35 S1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surgical Staplers in Laparoscopic Colectomy: A New Innovative Flexible Design Perspective\",\"authors\":\"Dhruva Khanzode, R. Jha, Alexandra Thomieres, Emilie Duchalais, Damien Chablat\",\"doi\":\"10.3390/robotics12060156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the development of a flexible surgical stapler mechanism, which serves as a fundamental tool for laparoscopic rectal cancer surgery, addressing the challenges posed by difficult types of accessibility using conventional instruments. The design of this mechanism involves the incorporation of a stacked tensegrity structure, in which a flexible beam serves as the central spine. To assess the stapler’s range of operation, an analysis of the workspace was conducted by examining collaborative Computed Tomography (CT) scan data obtained from different perspectives (Axial, Coronal, and Sagittal planes) at various intervals. By synthesizing kinematic equations, Hooke’s law was employed, taking into account rotational springs and bending moments. This allowed for precise control of the mechanism’s movements during surgical procedures in the rectal region. Additionally, the study examined the singularities and simulations of the tensegrity mechanism, considering the influential eyelet friction parameter. Notably, the research revealed that this friction parameter can alter the mechanism’s curvature, underscoring the importance of accurate analysis. To establish a correlation between the virtual and physical models, a preliminary design was presented, facilitating the identification of the friction parameter.\",\"PeriodicalId\":37568,\"journal\":{\"name\":\"Robotics\",\"volume\":\"35 S1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics12060156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12060156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种柔性手术订书机装置的开发情况,它是腹腔镜直肠癌手术的基本工具,解决了使用传统器械难以进入手术室的难题。该装置的设计采用了叠层张弦结构,其中柔性梁作为中心脊柱。为了评估订书机的工作范围,我们通过检查从不同角度(轴向、冠状和矢状面)以不同间隔获得的协作计算机断层扫描 (CT) 数据,对工作空间进行了分析。通过合成运动学方程,采用了胡克定律,并将旋转弹簧和弯矩考虑在内。这样就能在直肠区域的手术过程中精确控制机械装置的运动。此外,研究还考察了张力整体机构的奇异性和模拟情况,并考虑了有影响的孔眼摩擦参数。值得注意的是,研究发现该摩擦参数可改变机械装置的曲率,这凸显了精确分析的重要性。为了在虚拟模型和物理模型之间建立关联,提出了一个初步设计,有助于确定摩擦参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surgical Staplers in Laparoscopic Colectomy: A New Innovative Flexible Design Perspective
This article describes the development of a flexible surgical stapler mechanism, which serves as a fundamental tool for laparoscopic rectal cancer surgery, addressing the challenges posed by difficult types of accessibility using conventional instruments. The design of this mechanism involves the incorporation of a stacked tensegrity structure, in which a flexible beam serves as the central spine. To assess the stapler’s range of operation, an analysis of the workspace was conducted by examining collaborative Computed Tomography (CT) scan data obtained from different perspectives (Axial, Coronal, and Sagittal planes) at various intervals. By synthesizing kinematic equations, Hooke’s law was employed, taking into account rotational springs and bending moments. This allowed for precise control of the mechanism’s movements during surgical procedures in the rectal region. Additionally, the study examined the singularities and simulations of the tensegrity mechanism, considering the influential eyelet friction parameter. Notably, the research revealed that this friction parameter can alter the mechanism’s curvature, underscoring the importance of accurate analysis. To establish a correlation between the virtual and physical models, a preliminary design was presented, facilitating the identification of the friction parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics
Robotics Mathematics-Control and Optimization
CiteScore
6.70
自引率
8.10%
发文量
114
审稿时长
11 weeks
期刊介绍: Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信