Cole D. Christianson, Jared B. Baylis, Vicki Komisar, Joshua Brinkerhoff
{"title":"量化医院内产生气溶胶的医疗过程中的通风设计、房间布局和人员活动参数","authors":"Cole D. Christianson, Jared B. Baylis, Vicki Komisar, Joshua Brinkerhoff","doi":"10.1155/2023/6641824","DOIUrl":null,"url":null,"abstract":"The risk of airborne disease transmission in hospital rooms during aerosol-generating medical procedures is known to be influenced by the size of the room, air ventilation rate, input-to-output flow ratio, vent surface area, and vent location. However, quantitative recommendations for each ventilation design parameter are scarce. Moreover, room layout and occupant activity parameters, such as furniture locations and healthcare worker movement, are often omitted from studies on airborne disease transmission in hospital settings. As a result, the development of policies and technologies aimed at mitigating airborne disease transmission in hospitals has been limited. To address this shortfall, this study is aimed at first characterizing existing ventilation, room layout, and occupancy parameters in hospital rooms where aerosol generation medical procedures (AGMPs) occur and then testing the hypotheses that ventilation, room layout, and occupancy parameters vary significantly between hospital rooms and, in some cases, with time. Information on AGMPs was collected via a survey circulated to healthcare workers within British Columbia’s Interior Health Authority (IHA), while hospital room and ventilation system information was collected by reviewing drawing packages of 37 IHA hospital rooms. The survey results indicate that AGMPs commonly occur in trauma, ICU, or general ward rooms with positive or negative pressure ventilation systems. Statistical tests, with room type (trauma, ICU, or general), room pressure (positive or negative), and/or time as independent variables, show that variables relating to ventilation (number of supply vents, supply and exhaust vent location, ventilation rate, and supply and exhaust area) and room layout (congestion score, room volume, light area, and number of lights) vary with room type but not with room pressure. Occupant activity variables (number of workers, number of moving workers, and speed score) also vary with room type, although to differing extent with room pressure and time. The survey and drawing review data presented in this study can help guide systematic comparisons of mitigative technologies as well as parametric investigations on how room layout, ventilation, and operational parameters influence airborne disease spread. This is a crucial first step in achieving quantitative and clinically relevant recommendations for mitigating airborne disease transmission in healthcare settings.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"49 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Ventilation Design, Room Layout, and Occupant Activity Parameters during Aerosol-Generating Medical Procedures in Hospitals\",\"authors\":\"Cole D. Christianson, Jared B. Baylis, Vicki Komisar, Joshua Brinkerhoff\",\"doi\":\"10.1155/2023/6641824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The risk of airborne disease transmission in hospital rooms during aerosol-generating medical procedures is known to be influenced by the size of the room, air ventilation rate, input-to-output flow ratio, vent surface area, and vent location. However, quantitative recommendations for each ventilation design parameter are scarce. Moreover, room layout and occupant activity parameters, such as furniture locations and healthcare worker movement, are often omitted from studies on airborne disease transmission in hospital settings. As a result, the development of policies and technologies aimed at mitigating airborne disease transmission in hospitals has been limited. To address this shortfall, this study is aimed at first characterizing existing ventilation, room layout, and occupancy parameters in hospital rooms where aerosol generation medical procedures (AGMPs) occur and then testing the hypotheses that ventilation, room layout, and occupancy parameters vary significantly between hospital rooms and, in some cases, with time. Information on AGMPs was collected via a survey circulated to healthcare workers within British Columbia’s Interior Health Authority (IHA), while hospital room and ventilation system information was collected by reviewing drawing packages of 37 IHA hospital rooms. The survey results indicate that AGMPs commonly occur in trauma, ICU, or general ward rooms with positive or negative pressure ventilation systems. Statistical tests, with room type (trauma, ICU, or general), room pressure (positive or negative), and/or time as independent variables, show that variables relating to ventilation (number of supply vents, supply and exhaust vent location, ventilation rate, and supply and exhaust area) and room layout (congestion score, room volume, light area, and number of lights) vary with room type but not with room pressure. Occupant activity variables (number of workers, number of moving workers, and speed score) also vary with room type, although to differing extent with room pressure and time. The survey and drawing review data presented in this study can help guide systematic comparisons of mitigative technologies as well as parametric investigations on how room layout, ventilation, and operational parameters influence airborne disease spread. This is a crucial first step in achieving quantitative and clinically relevant recommendations for mitigating airborne disease transmission in healthcare settings.\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"49 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6641824\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1155/2023/6641824","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Quantifying Ventilation Design, Room Layout, and Occupant Activity Parameters during Aerosol-Generating Medical Procedures in Hospitals
The risk of airborne disease transmission in hospital rooms during aerosol-generating medical procedures is known to be influenced by the size of the room, air ventilation rate, input-to-output flow ratio, vent surface area, and vent location. However, quantitative recommendations for each ventilation design parameter are scarce. Moreover, room layout and occupant activity parameters, such as furniture locations and healthcare worker movement, are often omitted from studies on airborne disease transmission in hospital settings. As a result, the development of policies and technologies aimed at mitigating airborne disease transmission in hospitals has been limited. To address this shortfall, this study is aimed at first characterizing existing ventilation, room layout, and occupancy parameters in hospital rooms where aerosol generation medical procedures (AGMPs) occur and then testing the hypotheses that ventilation, room layout, and occupancy parameters vary significantly between hospital rooms and, in some cases, with time. Information on AGMPs was collected via a survey circulated to healthcare workers within British Columbia’s Interior Health Authority (IHA), while hospital room and ventilation system information was collected by reviewing drawing packages of 37 IHA hospital rooms. The survey results indicate that AGMPs commonly occur in trauma, ICU, or general ward rooms with positive or negative pressure ventilation systems. Statistical tests, with room type (trauma, ICU, or general), room pressure (positive or negative), and/or time as independent variables, show that variables relating to ventilation (number of supply vents, supply and exhaust vent location, ventilation rate, and supply and exhaust area) and room layout (congestion score, room volume, light area, and number of lights) vary with room type but not with room pressure. Occupant activity variables (number of workers, number of moving workers, and speed score) also vary with room type, although to differing extent with room pressure and time. The survey and drawing review data presented in this study can help guide systematic comparisons of mitigative technologies as well as parametric investigations on how room layout, ventilation, and operational parameters influence airborne disease spread. This is a crucial first step in achieving quantitative and clinically relevant recommendations for mitigating airborne disease transmission in healthcare settings.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.