基于刺激触发纳米医学的靶向蛋白质输送

Jinzhao Liu, Yang Zhou, Qingyang Lyu, Xiaotong Yao, Weiping Wang
{"title":"基于刺激触发纳米医学的靶向蛋白质输送","authors":"Jinzhao Liu,&nbsp;Yang Zhou,&nbsp;Qingyang Lyu,&nbsp;Xiaotong Yao,&nbsp;Weiping Wang","doi":"10.1002/EXP.20230025","DOIUrl":null,"url":null,"abstract":"<p>Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230025","citationCount":"0","resultStr":"{\"title\":\"Targeted protein delivery based on stimuli-triggered nanomedicine\",\"authors\":\"Jinzhao Liu,&nbsp;Yang Zhou,&nbsp;Qingyang Lyu,&nbsp;Xiaotong Yao,&nbsp;Weiping Wang\",\"doi\":\"10.1002/EXP.20230025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.</p>\",\"PeriodicalId\":72997,\"journal\":{\"name\":\"Exploration (Beijing, China)\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration (Beijing, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/EXP.20230025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration (Beijing, China)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/EXP.20230025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,以蛋白质为基础的药物在治疗各种疾病方面显示出独特的优势。然而,临床上使用的大多数蛋白质治疗药物仅限于细胞外靶点,给药效率较低。为了实现蛋白质的靶向递送,人们开发了一系列刺激触发纳米粒子配方,以提高递送效率,减少脱靶释放。这些智能纳米粒子可在病理组织受到内部或外部刺激时释放载体蛋白。这样,各种基于蛋白质的药物(包括抗体、酶和促凋亡蛋白)就能有效地输送到所需部位,用于治疗癌症、炎症、代谢性疾病等,而且副作用极小。本综述将讨论在不同生物医学应用中设计刺激触发纳米药物靶向输送蛋白质的最新进展。深入了解这些新兴策略有助于开发更高效的蛋白质递送系统,供未来临床使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Targeted protein delivery based on stimuli-triggered nanomedicine

Targeted protein delivery based on stimuli-triggered nanomedicine

Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信