数据驱动的感应电机轴承故障诊断

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Aqib Raqeeb, Fahim Shah, Zaheer Alam, Subhashree Choudhury, Bilal Khan, R. Palanisamy
{"title":"数据驱动的感应电机轴承故障诊断","authors":"Aqib Raqeeb, Fahim Shah, Zaheer Alam, Subhashree Choudhury, Bilal Khan, R. Palanisamy","doi":"10.1155/2023/7173989","DOIUrl":null,"url":null,"abstract":"Bearings are critical components in modern manufacturing, yet they are prone to failures in induction machines. Detecting these faults early can reduce repair costs. To achieve efficient and accurate fault detection, we explore vibration-based analysis. Traditional methods rely on manual feature extraction, which is time-consuming. In contrast, our work leverages deep learning, particularly convolutional neural networks, to automatically extract fault features from raw data. We investigate various image sizes (16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 × 256) and their performance in bearing fault diagnosis. Our convolutional neural networks-based approach is compared to traditional methods such as support vector machine, nearest neighbors, and artificial neural networks. Results demonstrate the superior performance of our data-driven fault diagnosis using convolutional neural networks.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Bearing Fault Diagnosis for Induction Motor\",\"authors\":\"Aqib Raqeeb, Fahim Shah, Zaheer Alam, Subhashree Choudhury, Bilal Khan, R. Palanisamy\",\"doi\":\"10.1155/2023/7173989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bearings are critical components in modern manufacturing, yet they are prone to failures in induction machines. Detecting these faults early can reduce repair costs. To achieve efficient and accurate fault detection, we explore vibration-based analysis. Traditional methods rely on manual feature extraction, which is time-consuming. In contrast, our work leverages deep learning, particularly convolutional neural networks, to automatically extract fault features from raw data. We investigate various image sizes (16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 × 256) and their performance in bearing fault diagnosis. Our convolutional neural networks-based approach is compared to traditional methods such as support vector machine, nearest neighbors, and artificial neural networks. Results demonstrate the superior performance of our data-driven fault diagnosis using convolutional neural networks.\",\"PeriodicalId\":46573,\"journal\":{\"name\":\"Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7173989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7173989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

轴承是现代制造业的关键部件,但在感应机器中却很容易出现故障。及早发现这些故障可以降低维修成本。为了实现高效、准确的故障检测,我们探索了基于振动的分析方法。传统方法依赖于人工特征提取,非常耗时。相比之下,我们的工作利用深度学习,特别是卷积神经网络,自动从原始数据中提取故障特征。我们研究了各种图像尺寸(16 × 16、32 × 32、64 × 64、128 × 128、256 × 256)及其在轴承故障诊断中的性能。我们将基于卷积神经网络的方法与支持向量机、最近邻和人工神经网络等传统方法进行了比较。结果表明,我们利用卷积神经网络进行的数据驱动故障诊断性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Bearing Fault Diagnosis for Induction Motor
Bearings are critical components in modern manufacturing, yet they are prone to failures in induction machines. Detecting these faults early can reduce repair costs. To achieve efficient and accurate fault detection, we explore vibration-based analysis. Traditional methods rely on manual feature extraction, which is time-consuming. In contrast, our work leverages deep learning, particularly convolutional neural networks, to automatically extract fault features from raw data. We investigate various image sizes (16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 × 256) and their performance in bearing fault diagnosis. Our convolutional neural networks-based approach is compared to traditional methods such as support vector machine, nearest neighbors, and artificial neural networks. Results demonstrate the superior performance of our data-driven fault diagnosis using convolutional neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信