Rafał Stottko, Elżbieta Dziadyk-Stopyra, Bartłomiej M. Szyja
{"title":"机器学习能否预测小型铜/镍簇催化二氧化碳还原反应的路径?","authors":"Rafał Stottko, Elżbieta Dziadyk-Stopyra, Bartłomiej M. Szyja","doi":"10.3390/catal13121470","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the catalytic CO2 reduction process on 13-atom bimetallic nanoclusters with icosahedron geometry. As copper and nickel atoms may be positioned in different locations and either separated into groups or uniformly distributed, the possible permutations lead to many unnecessary simulations. Thus, we have developed a machine learning model aimed at predicting the energy of a specific group of bimetallic (CuNi) clusters and their interactions with CO2 reduction intermediates. The training data for the algorithm have been provided from DFT simulations and consist only of the coordinates and types of atoms, together with the related potential energy of the system. While the algorithm is not able to predict the exact energy of the given complex, it is able to select the candidates for further optimization with reasonably good certainty. We have also found that the stability of the complex depends on the type of central atom in the nanoparticle, despite it not directly interacting with the intermediates.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"7 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can Machine Learning Predict the Reaction Paths in Catalytic CO2 Reduction on Small Cu/Ni Clusters?\",\"authors\":\"Rafał Stottko, Elżbieta Dziadyk-Stopyra, Bartłomiej M. Szyja\",\"doi\":\"10.3390/catal13121470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the catalytic CO2 reduction process on 13-atom bimetallic nanoclusters with icosahedron geometry. As copper and nickel atoms may be positioned in different locations and either separated into groups or uniformly distributed, the possible permutations lead to many unnecessary simulations. Thus, we have developed a machine learning model aimed at predicting the energy of a specific group of bimetallic (CuNi) clusters and their interactions with CO2 reduction intermediates. The training data for the algorithm have been provided from DFT simulations and consist only of the coordinates and types of atoms, together with the related potential energy of the system. While the algorithm is not able to predict the exact energy of the given complex, it is able to select the candidates for further optimization with reasonably good certainty. We have also found that the stability of the complex depends on the type of central atom in the nanoparticle, despite it not directly interacting with the intermediates.\",\"PeriodicalId\":9794,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal13121470\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal13121470","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Can Machine Learning Predict the Reaction Paths in Catalytic CO2 Reduction on Small Cu/Ni Clusters?
In this paper, we explore the catalytic CO2 reduction process on 13-atom bimetallic nanoclusters with icosahedron geometry. As copper and nickel atoms may be positioned in different locations and either separated into groups or uniformly distributed, the possible permutations lead to many unnecessary simulations. Thus, we have developed a machine learning model aimed at predicting the energy of a specific group of bimetallic (CuNi) clusters and their interactions with CO2 reduction intermediates. The training data for the algorithm have been provided from DFT simulations and consist only of the coordinates and types of atoms, together with the related potential energy of the system. While the algorithm is not able to predict the exact energy of the given complex, it is able to select the candidates for further optimization with reasonably good certainty. We have also found that the stability of the complex depends on the type of central atom in the nanoparticle, despite it not directly interacting with the intermediates.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.