Xinxing Wang, Tiejun Lin, D. Lv, Yunlei An, Xingzhen Qi, K. Gong, Liangshu Zhong
{"title":"将合成气直接转化为烯烃的 CoFe 双金属催化剂","authors":"Xinxing Wang, Tiejun Lin, D. Lv, Yunlei An, Xingzhen Qi, K. Gong, Liangshu Zhong","doi":"10.3390/catal13121472","DOIUrl":null,"url":null,"abstract":"Syngas conversion is a useful technology for converting nonpetroleum carbon resources into chemicals such as olefins. Iron- and cobalt-based catalysts, as two major categories, have been extensively studied in Fischer–Tropsch synthesis to olefins (FTO) reactions. Although both iron and cobalt catalysts have shown distinct merits and shortcomings, they are also complementary in their properties and catalytic performances when combined with each other. Herein, Na-modified CoFe bimetallic catalysts were fabricated using a co-precipitation method. It was found that there was a synergistic effect between Co and Fe that promoted a CO dissociation rate and carburization, and an appropriate Co/Fe ratio was conducive to improvements in their catalytic performances. The desired olefins selectivity reached 66.1 C% at a CO conversion of 37.5% for a Co2Fe1 catalyst, while the methane selectivity was only 4.3 C%. In addition, no obvious deactivation was found after nearly 160 h, indicating their potential industrial application.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CoFe Bimetallic Catalyst for the Direct Conversion of Syngas to Olefins\",\"authors\":\"Xinxing Wang, Tiejun Lin, D. Lv, Yunlei An, Xingzhen Qi, K. Gong, Liangshu Zhong\",\"doi\":\"10.3390/catal13121472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Syngas conversion is a useful technology for converting nonpetroleum carbon resources into chemicals such as olefins. Iron- and cobalt-based catalysts, as two major categories, have been extensively studied in Fischer–Tropsch synthesis to olefins (FTO) reactions. Although both iron and cobalt catalysts have shown distinct merits and shortcomings, they are also complementary in their properties and catalytic performances when combined with each other. Herein, Na-modified CoFe bimetallic catalysts were fabricated using a co-precipitation method. It was found that there was a synergistic effect between Co and Fe that promoted a CO dissociation rate and carburization, and an appropriate Co/Fe ratio was conducive to improvements in their catalytic performances. The desired olefins selectivity reached 66.1 C% at a CO conversion of 37.5% for a Co2Fe1 catalyst, while the methane selectivity was only 4.3 C%. In addition, no obvious deactivation was found after nearly 160 h, indicating their potential industrial application.\",\"PeriodicalId\":9794,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal13121472\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal13121472","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
合成气转化是将非石油碳资源转化为烯烃等化学品的有用技术。铁基和钴基催化剂作为两大类催化剂,在费托合成烯烃(FTO)反应中得到了广泛研究。虽然铁催化剂和钴催化剂各有优缺点,但两者结合后在性质和催化性能上也具有互补性。本文采用共沉淀法制备了 Na 改性 CoFe 双金属催化剂。研究发现,Co 和 Fe 之间存在协同效应,可促进 CO 的解离率和渗碳,适当的 Co/Fe 比有利于提高催化性能。当 CO 转化率为 37.5% 时,Co2Fe1 催化剂的烯烃选择性达到 66.1 C%,而甲烷选择性仅为 4.3 C%。此外,经过近 160 小时后,未发现明显的失活现象,这表明它们具有潜在的工业应用价值。
A CoFe Bimetallic Catalyst for the Direct Conversion of Syngas to Olefins
Syngas conversion is a useful technology for converting nonpetroleum carbon resources into chemicals such as olefins. Iron- and cobalt-based catalysts, as two major categories, have been extensively studied in Fischer–Tropsch synthesis to olefins (FTO) reactions. Although both iron and cobalt catalysts have shown distinct merits and shortcomings, they are also complementary in their properties and catalytic performances when combined with each other. Herein, Na-modified CoFe bimetallic catalysts were fabricated using a co-precipitation method. It was found that there was a synergistic effect between Co and Fe that promoted a CO dissociation rate and carburization, and an appropriate Co/Fe ratio was conducive to improvements in their catalytic performances. The desired olefins selectivity reached 66.1 C% at a CO conversion of 37.5% for a Co2Fe1 catalyst, while the methane selectivity was only 4.3 C%. In addition, no obvious deactivation was found after nearly 160 h, indicating their potential industrial application.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.