Dr. Cristiana Margarita, Dr. Anna Laurell Nash, David A. Ahlstrand, Prof. Dr. Mårten S. G. Ahlquist, Prof. Dr. Ola F. Wendt, Dr. Linda Fransson, Prof. Dr. Christina Moberg
{"title":"耗散循环反应网络:小对映体回收过程的机理启示","authors":"Dr. Cristiana Margarita, Dr. Anna Laurell Nash, David A. Ahlstrand, Prof. Dr. Mårten S. G. Ahlquist, Prof. Dr. Ola F. Wendt, Dr. Linda Fransson, Prof. Dr. Christina Moberg","doi":"10.1002/syst.202300045","DOIUrl":null,"url":null,"abstract":"<p>An analysis of an out-of-equilibrium cyclic reaction network which continuously converts a minor undesired product enantiomer to the desired major enantiomer by irreversible addition of chemical fuel and irreversible elimination of spent fuel is presented. The reaction network is maintained as long as fuel is added; interrupted fuel addition drives the system towards equilibrium, but the cyclic process restarts upon resumed fuel addition, as demonstrated by three consecutive fuel cycles. The process is powered by the hydrolysis of methyl cyanoformate to HCN and monomethyl carbonic acid, which decomposes to CO<sub>2</sub> and MeOH. The time it takes to reach steady state depends on the rate of conversion of the fuel and decreases with increased conversion rate. Three catalysts, one metal catalyst and two enzymes, together constitute an efficient regulation system allowing control of the forward, backward and waste-forming steps, thereby assuring the production of high yields of products with high enantiopurity.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202300045","citationCount":"0","resultStr":"{\"title\":\"Dissipative Cyclic Reaction Networks: Mechanistic Insights into a Minor Enantiomer Recycling Process\",\"authors\":\"Dr. Cristiana Margarita, Dr. Anna Laurell Nash, David A. Ahlstrand, Prof. Dr. Mårten S. G. Ahlquist, Prof. Dr. Ola F. Wendt, Dr. Linda Fransson, Prof. Dr. Christina Moberg\",\"doi\":\"10.1002/syst.202300045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An analysis of an out-of-equilibrium cyclic reaction network which continuously converts a minor undesired product enantiomer to the desired major enantiomer by irreversible addition of chemical fuel and irreversible elimination of spent fuel is presented. The reaction network is maintained as long as fuel is added; interrupted fuel addition drives the system towards equilibrium, but the cyclic process restarts upon resumed fuel addition, as demonstrated by three consecutive fuel cycles. The process is powered by the hydrolysis of methyl cyanoformate to HCN and monomethyl carbonic acid, which decomposes to CO<sub>2</sub> and MeOH. The time it takes to reach steady state depends on the rate of conversion of the fuel and decreases with increased conversion rate. Three catalysts, one metal catalyst and two enzymes, together constitute an efficient regulation system allowing control of the forward, backward and waste-forming steps, thereby assuring the production of high yields of products with high enantiopurity.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202300045\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202300045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202300045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文分析了一个失去平衡的循环反应网络,该网络通过不可逆地添加化学燃料和不可逆地消除乏燃料,不断地将次要的不想要的产品对映体转化为所需的主要对映体。只要添加燃料,反应网络就会保持不变;中断添加燃料会使系统趋于平衡,但循环过程会在重新添加燃料后重新启动,连续三次燃料循环证明了这一点。该过程的动力来自氰基甲酸甲酯水解成 HCN 和碳酸一甲酯,碳酸一甲酯分解成 CO2 和 MeOH。达到稳定状态所需的时间取决于燃料的转化率,并随着转化率的增加而减少。三种催化剂、一种金属催化剂和两种酶共同构成了一个高效的调节系统,可以控制前向、后向和废物形成步骤,从而确保生产出高产率和高对映纯度的产品。
Dissipative Cyclic Reaction Networks: Mechanistic Insights into a Minor Enantiomer Recycling Process
An analysis of an out-of-equilibrium cyclic reaction network which continuously converts a minor undesired product enantiomer to the desired major enantiomer by irreversible addition of chemical fuel and irreversible elimination of spent fuel is presented. The reaction network is maintained as long as fuel is added; interrupted fuel addition drives the system towards equilibrium, but the cyclic process restarts upon resumed fuel addition, as demonstrated by three consecutive fuel cycles. The process is powered by the hydrolysis of methyl cyanoformate to HCN and monomethyl carbonic acid, which decomposes to CO2 and MeOH. The time it takes to reach steady state depends on the rate of conversion of the fuel and decreases with increased conversion rate. Three catalysts, one metal catalyst and two enzymes, together constitute an efficient regulation system allowing control of the forward, backward and waste-forming steps, thereby assuring the production of high yields of products with high enantiopurity.