{"title":"利用安全芽孢杆菌 MABS6 通过固态发酵从番茄酱中生产木聚糖酶和其他酶的可持续和生态友好型方法","authors":"Amal Hassan Alshawi","doi":"10.21608/cat.2023.242486.1215","DOIUrl":null,"url":null,"abstract":"This study aimed to establish a sustainable and eco-friendly approach for the production of enzymes, including xylanase, exo-polygalacturonase (exo-PG), cellulase (CMCase), and α-amylase, using tomato pomace through solid-state fermentation (SSF) with Bacillus safensis . Kinetic studies revealed that xylanase and exo-PG exhibited their peak activities early in the fermentation process, reaching approximately 110 IU/mL and 70 IU/mL, respectively. In contrast, CMCase and α-amylase activities remained relatively constant, maintaining average levels of 19.8 IU/mL and 22.4 IU/mL throughout the fermentation process. Further investigations in a plate-type bioreactor unveiled the significant impact of aeration on enzyme activities. Aeration positively enhanced the activities of xylanase and CMCase, while it had an inverse effect on exo-PG and α-amylase activities. The focus of our study was to establish the optimal conditions for xylanase production, given its versatility and industrial value. The highest productivity was achieved at a pH of 5 and a temperature of 50 °C. Additionally, the presence of Mg+2 ions positively influenced enzymatic activity, whereas the presence of Hg +2 and Cu +2 ions acted as strong inhibitors. Furthermore, our results demonstrated the remarkable resilience and stability of xylanase across a wide pH range (pH 3-12) and temperatures (30 °C to 60 °C). Overall, these findings contribute to the development of greener enzyme production strategies and provide valuable insights into their widespread applicability across various industrial sectors","PeriodicalId":505578,"journal":{"name":"Catrina: The International Journal of Environmental Sciences","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable and Eco-Friendly Production of Xylanase and Other Enzymes from Tomato Paste through Solid-State Fermentation Using Bacillus safensis MABS6\",\"authors\":\"Amal Hassan Alshawi\",\"doi\":\"10.21608/cat.2023.242486.1215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to establish a sustainable and eco-friendly approach for the production of enzymes, including xylanase, exo-polygalacturonase (exo-PG), cellulase (CMCase), and α-amylase, using tomato pomace through solid-state fermentation (SSF) with Bacillus safensis . Kinetic studies revealed that xylanase and exo-PG exhibited their peak activities early in the fermentation process, reaching approximately 110 IU/mL and 70 IU/mL, respectively. In contrast, CMCase and α-amylase activities remained relatively constant, maintaining average levels of 19.8 IU/mL and 22.4 IU/mL throughout the fermentation process. Further investigations in a plate-type bioreactor unveiled the significant impact of aeration on enzyme activities. Aeration positively enhanced the activities of xylanase and CMCase, while it had an inverse effect on exo-PG and α-amylase activities. The focus of our study was to establish the optimal conditions for xylanase production, given its versatility and industrial value. The highest productivity was achieved at a pH of 5 and a temperature of 50 °C. Additionally, the presence of Mg+2 ions positively influenced enzymatic activity, whereas the presence of Hg +2 and Cu +2 ions acted as strong inhibitors. Furthermore, our results demonstrated the remarkable resilience and stability of xylanase across a wide pH range (pH 3-12) and temperatures (30 °C to 60 °C). Overall, these findings contribute to the development of greener enzyme production strategies and provide valuable insights into their widespread applicability across various industrial sectors\",\"PeriodicalId\":505578,\"journal\":{\"name\":\"Catrina: The International Journal of Environmental Sciences\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catrina: The International Journal of Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/cat.2023.242486.1215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catrina: The International Journal of Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/cat.2023.242486.1215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustainable and Eco-Friendly Production of Xylanase and Other Enzymes from Tomato Paste through Solid-State Fermentation Using Bacillus safensis MABS6
This study aimed to establish a sustainable and eco-friendly approach for the production of enzymes, including xylanase, exo-polygalacturonase (exo-PG), cellulase (CMCase), and α-amylase, using tomato pomace through solid-state fermentation (SSF) with Bacillus safensis . Kinetic studies revealed that xylanase and exo-PG exhibited their peak activities early in the fermentation process, reaching approximately 110 IU/mL and 70 IU/mL, respectively. In contrast, CMCase and α-amylase activities remained relatively constant, maintaining average levels of 19.8 IU/mL and 22.4 IU/mL throughout the fermentation process. Further investigations in a plate-type bioreactor unveiled the significant impact of aeration on enzyme activities. Aeration positively enhanced the activities of xylanase and CMCase, while it had an inverse effect on exo-PG and α-amylase activities. The focus of our study was to establish the optimal conditions for xylanase production, given its versatility and industrial value. The highest productivity was achieved at a pH of 5 and a temperature of 50 °C. Additionally, the presence of Mg+2 ions positively influenced enzymatic activity, whereas the presence of Hg +2 and Cu +2 ions acted as strong inhibitors. Furthermore, our results demonstrated the remarkable resilience and stability of xylanase across a wide pH range (pH 3-12) and temperatures (30 °C to 60 °C). Overall, these findings contribute to the development of greener enzyme production strategies and provide valuable insights into their widespread applicability across various industrial sectors