基于多单元变流器的并联有源电力滤波器自适应容错控制策略

Q3 Engineering
Diagnostyka Pub Date : 2023-11-28 DOI:10.29354/diag/175006
Ali Bouhafs, B. Rouabah, M. R. Kafi, Lakhdar Louazene
{"title":"基于多单元变流器的并联有源电力滤波器自适应容错控制策略","authors":"Ali Bouhafs, B. Rouabah, M. R. Kafi, Lakhdar Louazene","doi":"10.29354/diag/175006","DOIUrl":null,"url":null,"abstract":"The use of multicellular topology in power quality enhancement can reduce the power loss and also dv/dt of power switches, minimize the electromagnetic interference. However, the failure of flying capacitors can reduce the active filtering efficiency and affect the power quality by injecting currents with wave-form distortion (harmonics, notching, noises etc.) in power distribution grid. Therefore, this study presents a fault-tolerant control strategy (FTC) allowing to keep the normal operation conditions of a multicellular converter even under failure mode. The obtained results show that the proposed FTC strategy enhances the power quality of power distribution grid when a fault in flying capacitors occurs.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-adaptive fault-tolerant control strategy of shunt active power filter based on multicellular converter\",\"authors\":\"Ali Bouhafs, B. Rouabah, M. R. Kafi, Lakhdar Louazene\",\"doi\":\"10.29354/diag/175006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of multicellular topology in power quality enhancement can reduce the power loss and also dv/dt of power switches, minimize the electromagnetic interference. However, the failure of flying capacitors can reduce the active filtering efficiency and affect the power quality by injecting currents with wave-form distortion (harmonics, notching, noises etc.) in power distribution grid. Therefore, this study presents a fault-tolerant control strategy (FTC) allowing to keep the normal operation conditions of a multicellular converter even under failure mode. The obtained results show that the proposed FTC strategy enhances the power quality of power distribution grid when a fault in flying capacitors occurs.\",\"PeriodicalId\":52164,\"journal\":{\"name\":\"Diagnostyka\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29354/diag/175006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/175006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在电能质量提升中使用多蜂窝拓扑结构可以减少功率损耗,同时降低电力开关的 dv/dt,最大限度地减少电磁干扰。然而,飞行电容器的故障会降低有源滤波效率,并通过向配电网注入波形失真电流(谐波、缺口、噪声等)影响电能质量。因此,本研究提出了一种容错控制策略 (FTC),即使在故障模式下也能保持多蜂窝变流器的正常运行状态。研究结果表明,当飞行电容器发生故障时,所提出的 FTC 策略可提高配电网的电能质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-adaptive fault-tolerant control strategy of shunt active power filter based on multicellular converter
The use of multicellular topology in power quality enhancement can reduce the power loss and also dv/dt of power switches, minimize the electromagnetic interference. However, the failure of flying capacitors can reduce the active filtering efficiency and affect the power quality by injecting currents with wave-form distortion (harmonics, notching, noises etc.) in power distribution grid. Therefore, this study presents a fault-tolerant control strategy (FTC) allowing to keep the normal operation conditions of a multicellular converter even under failure mode. The obtained results show that the proposed FTC strategy enhances the power quality of power distribution grid when a fault in flying capacitors occurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostyka
Diagnostyka Engineering-Mechanical Engineering
CiteScore
2.20
自引率
0.00%
发文量
41
期刊介绍: Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信