用于移动机器人操纵的虚拟现实远程操作系统

IF 2.9 Q2 ROBOTICS
Robotics Pub Date : 2023-11-29 DOI:10.3390/robotics12060163
Bryan R. Galarza, Paulina Ayala, Santiago Manzano, Marcelo V. Garcia
{"title":"用于移动机器人操纵的虚拟现实远程操作系统","authors":"Bryan R. Galarza, Paulina Ayala, Santiago Manzano, Marcelo V. Garcia","doi":"10.3390/robotics12060163","DOIUrl":null,"url":null,"abstract":"Over the past few years, the industry has experienced significant growth, leading to what is now known as Industry 4.0. This advancement has been characterized by the automation of robots. Industries have embraced mobile robots to enhance efficiency in specific manufacturing tasks, aiming for optimal results and reducing human errors. Moreover, robots can perform tasks in areas inaccessible to humans, such as hard-to-reach zones or hazardous environments. However, the challenge lies in the lack of knowledge about the operation and proper use of the robot. This work presents the development of a teleoperation system using HTC Vive Pro 2 virtual reality goggles. This allows individuals to immerse themselves in a fully virtual environment to become familiar with the operation and control of the KUKA youBot robot. The virtual reality experience is created in Unity, and through this, robot movements are executed, followed by a connection to ROS (Robot Operating System). To prevent potential damage to the real robot, a simulation is conducted in Gazebo, facilitating the understanding of the robot’s operation.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"234 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Reality Teleoperation System for Mobile Robot Manipulation\",\"authors\":\"Bryan R. Galarza, Paulina Ayala, Santiago Manzano, Marcelo V. Garcia\",\"doi\":\"10.3390/robotics12060163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past few years, the industry has experienced significant growth, leading to what is now known as Industry 4.0. This advancement has been characterized by the automation of robots. Industries have embraced mobile robots to enhance efficiency in specific manufacturing tasks, aiming for optimal results and reducing human errors. Moreover, robots can perform tasks in areas inaccessible to humans, such as hard-to-reach zones or hazardous environments. However, the challenge lies in the lack of knowledge about the operation and proper use of the robot. This work presents the development of a teleoperation system using HTC Vive Pro 2 virtual reality goggles. This allows individuals to immerse themselves in a fully virtual environment to become familiar with the operation and control of the KUKA youBot robot. The virtual reality experience is created in Unity, and through this, robot movements are executed, followed by a connection to ROS (Robot Operating System). To prevent potential damage to the real robot, a simulation is conducted in Gazebo, facilitating the understanding of the robot’s operation.\",\"PeriodicalId\":37568,\"journal\":{\"name\":\"Robotics\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics12060163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12060163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中,工业经历了显著的增长,从而形成了现在所谓的 "工业 4.0"。这一进步的特点是机器人的自动化。各行各业纷纷采用移动机器人来提高特定制造任务的效率,以达到最佳效果并减少人为错误。此外,机器人还能在人类无法到达的区域执行任务,如难以到达的区域或危险环境。然而,挑战在于缺乏有关机器人操作和正确使用的知识。本作品介绍了使用 HTC Vive Pro 2 虚拟现实眼镜开发远程操作系统的情况。这样,个人就可以沉浸在完全虚拟的环境中,熟悉库卡 youBot 机器人的操作和控制。虚拟现实体验是在 Unity 中创建的,通过它可以执行机器人动作,然后连接到 ROS(机器人操作系统)。为防止对真实机器人造成潜在损害,在 Gazebo 中进行了模拟,以促进对机器人操作的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual Reality Teleoperation System for Mobile Robot Manipulation
Over the past few years, the industry has experienced significant growth, leading to what is now known as Industry 4.0. This advancement has been characterized by the automation of robots. Industries have embraced mobile robots to enhance efficiency in specific manufacturing tasks, aiming for optimal results and reducing human errors. Moreover, robots can perform tasks in areas inaccessible to humans, such as hard-to-reach zones or hazardous environments. However, the challenge lies in the lack of knowledge about the operation and proper use of the robot. This work presents the development of a teleoperation system using HTC Vive Pro 2 virtual reality goggles. This allows individuals to immerse themselves in a fully virtual environment to become familiar with the operation and control of the KUKA youBot robot. The virtual reality experience is created in Unity, and through this, robot movements are executed, followed by a connection to ROS (Robot Operating System). To prevent potential damage to the real robot, a simulation is conducted in Gazebo, facilitating the understanding of the robot’s operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics
Robotics Mathematics-Control and Optimization
CiteScore
6.70
自引率
8.10%
发文量
114
审稿时长
11 weeks
期刊介绍: Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信