扩展准锥B度量空间上的广义几乎收缩

Q3 Mathematics
Silvana Liftaj, Eriola Sila, Zamir Selko
{"title":"扩展准锥B度量空间上的广义几乎收缩","authors":"Silvana Liftaj, Eriola Sila, Zamir Selko","doi":"10.37394/23206.2023.22.98","DOIUrl":null,"url":null,"abstract":"Fixed Point Theory is among the most valued research topics nowadays. Over the years, it has been developed in three directions: by generalizing the metric space, by establishing new contractive conditions, and by applying its results to various fields such as Differential Equations, Integral Equations, Economics, etc. In this paper, we define a new class of cone metric spaces called the class of extended quasi-cone b-metric spaces. Extended quasi-cone b-metric spaces generalize cone metric spaces and quasi-cone b-metric spaces. We have studied topological issues, such as the right and left topologies, right (left) Cauchy, and convergent sequences. Furthermore, there are determined generalized τ-almost contractions, which extend the almost contractions. The highlight of this study is the investigation of the existence and uniqueness of a fixed point for some types of generalized τ-almost contractions in extended quasi-cone b-metric space. We prove some corollaries and theorems for known contractions in extended quasi-cone b-metric spaces. Our results generalize some known theorems given in literature due to the new cone metric spaces and contractions. Concrete examples illustrate theoretical outcomes. In addition, we show an application of the main results to Integral Equations, which provides the applicative side of them.","PeriodicalId":55878,"journal":{"name":"WSEAS Transactions on Mathematics","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized almost Contractions on Extended Quasi-Cone B-Metric Spaces\",\"authors\":\"Silvana Liftaj, Eriola Sila, Zamir Selko\",\"doi\":\"10.37394/23206.2023.22.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fixed Point Theory is among the most valued research topics nowadays. Over the years, it has been developed in three directions: by generalizing the metric space, by establishing new contractive conditions, and by applying its results to various fields such as Differential Equations, Integral Equations, Economics, etc. In this paper, we define a new class of cone metric spaces called the class of extended quasi-cone b-metric spaces. Extended quasi-cone b-metric spaces generalize cone metric spaces and quasi-cone b-metric spaces. We have studied topological issues, such as the right and left topologies, right (left) Cauchy, and convergent sequences. Furthermore, there are determined generalized τ-almost contractions, which extend the almost contractions. The highlight of this study is the investigation of the existence and uniqueness of a fixed point for some types of generalized τ-almost contractions in extended quasi-cone b-metric space. We prove some corollaries and theorems for known contractions in extended quasi-cone b-metric spaces. Our results generalize some known theorems given in literature due to the new cone metric spaces and contractions. Concrete examples illustrate theoretical outcomes. In addition, we show an application of the main results to Integral Equations, which provides the applicative side of them.\",\"PeriodicalId\":55878,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2023.22.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2023.22.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

定点理论是当今最受重视的研究课题之一。多年来,它在三个方向上得到了发展:通过泛化度量空间,通过建立新的收缩条件,以及将其结果应用于微分方程、积分方程、经济学等各个领域。在本文中,我们定义了一类新的圆锥度量空间,称为扩展准圆锥 b 度量空间。扩展准锥 b-metric空间概括了圆锥度量空间和准锥 b-metric空间。我们研究了拓扑问题,如左右拓扑、右(左)考奇和收敛序列。此外,还确定了广义τ-几乎收缩,扩展了几乎收缩。本研究的亮点是研究扩展准锥 b 度量空间中某些类型广义 τ-almost 收缩的定点的存在性和唯一性。我们证明了扩展准锥 b-metric空间中已知收缩的一些推论和定理。由于新的锥形度量空间和收缩,我们的结果概括了文献中给出的一些已知定理。具体的例子说明了理论成果。此外,我们还展示了主要结果在积分方程中的应用,提供了这些结果的应用方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized almost Contractions on Extended Quasi-Cone B-Metric Spaces
Fixed Point Theory is among the most valued research topics nowadays. Over the years, it has been developed in three directions: by generalizing the metric space, by establishing new contractive conditions, and by applying its results to various fields such as Differential Equations, Integral Equations, Economics, etc. In this paper, we define a new class of cone metric spaces called the class of extended quasi-cone b-metric spaces. Extended quasi-cone b-metric spaces generalize cone metric spaces and quasi-cone b-metric spaces. We have studied topological issues, such as the right and left topologies, right (left) Cauchy, and convergent sequences. Furthermore, there are determined generalized τ-almost contractions, which extend the almost contractions. The highlight of this study is the investigation of the existence and uniqueness of a fixed point for some types of generalized τ-almost contractions in extended quasi-cone b-metric space. We prove some corollaries and theorems for known contractions in extended quasi-cone b-metric spaces. Our results generalize some known theorems given in literature due to the new cone metric spaces and contractions. Concrete examples illustrate theoretical outcomes. In addition, we show an application of the main results to Integral Equations, which provides the applicative side of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Mathematics
WSEAS Transactions on Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
93
期刊介绍: WSEAS Transactions on Mathematics publishes original research papers relating to applied and theoretical mathematics. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with linear algebra, numerical analysis, differential equations, statistics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信