D. A. Herrera, B. I. Cook, John Fasullo, K. Anchukaitis, Marc Alessi, Carlos J. Martinez, Colin P. Evans, Xiaolu Li, Kelsey N. Ellis, Rafael Mendez, T. Ault, A. Centella, Tannecia S. Stephenson, Michael A. Taylor
{"title":"观测到的水文气象变化归因于人类作用力","authors":"D. A. Herrera, B. I. Cook, John Fasullo, K. Anchukaitis, Marc Alessi, Carlos J. Martinez, Colin P. Evans, Xiaolu Li, Kelsey N. Ellis, Rafael Mendez, T. Ault, A. Centella, Tannecia S. Stephenson, Michael A. Taylor","doi":"10.1371/journal.pclm.0000303","DOIUrl":null,"url":null,"abstract":"Observational and modeling studies indicate significant changes in the global hydroclimate in the twentieth and early twenty-first centuries due to anthropogenic climate change. In this review, we analyze the recent literature on the observed changes in hydroclimate attributable to anthropogenic forcing, the physical and biological mechanisms underlying those changes, and the advantages and limitations of current detection and attribution methods. Changes in the magnitude and spatial patterns of precipitation minus evaporation (P–E) are consistent with increased water vapor content driven by higher temperatures. While thermodynamics explains most of the observed changes, the contribution of dynamics is not yet well constrained, especially at regional and local scales, due to limitations in observations and climate models. Anthropogenic climate change has also increased the severity and likelihood of contemporaneous droughts in southwestern North America, southwestern South America, the Mediterranean, and the Caribbean. An increased frequency of extreme precipitation events and shifts in phenology has also been attributed to anthropogenic climate change. While considerable uncertainties persist on the role of plant physiology in modulating hydroclimate and vice versa, emerging evidence indicates that increased canopy water demand and longer growing seasons negate the water-saving effects from increased water-use efficiency.","PeriodicalId":510827,"journal":{"name":"PLOS Climate","volume":"211 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observed changes in hydroclimate attributed to human forcing\",\"authors\":\"D. A. Herrera, B. I. Cook, John Fasullo, K. Anchukaitis, Marc Alessi, Carlos J. Martinez, Colin P. Evans, Xiaolu Li, Kelsey N. Ellis, Rafael Mendez, T. Ault, A. Centella, Tannecia S. Stephenson, Michael A. Taylor\",\"doi\":\"10.1371/journal.pclm.0000303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observational and modeling studies indicate significant changes in the global hydroclimate in the twentieth and early twenty-first centuries due to anthropogenic climate change. In this review, we analyze the recent literature on the observed changes in hydroclimate attributable to anthropogenic forcing, the physical and biological mechanisms underlying those changes, and the advantages and limitations of current detection and attribution methods. Changes in the magnitude and spatial patterns of precipitation minus evaporation (P–E) are consistent with increased water vapor content driven by higher temperatures. While thermodynamics explains most of the observed changes, the contribution of dynamics is not yet well constrained, especially at regional and local scales, due to limitations in observations and climate models. Anthropogenic climate change has also increased the severity and likelihood of contemporaneous droughts in southwestern North America, southwestern South America, the Mediterranean, and the Caribbean. An increased frequency of extreme precipitation events and shifts in phenology has also been attributed to anthropogenic climate change. While considerable uncertainties persist on the role of plant physiology in modulating hydroclimate and vice versa, emerging evidence indicates that increased canopy water demand and longer growing seasons negate the water-saving effects from increased water-use efficiency.\",\"PeriodicalId\":510827,\"journal\":{\"name\":\"PLOS Climate\",\"volume\":\"211 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pclm.0000303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pclm.0000303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Observed changes in hydroclimate attributed to human forcing
Observational and modeling studies indicate significant changes in the global hydroclimate in the twentieth and early twenty-first centuries due to anthropogenic climate change. In this review, we analyze the recent literature on the observed changes in hydroclimate attributable to anthropogenic forcing, the physical and biological mechanisms underlying those changes, and the advantages and limitations of current detection and attribution methods. Changes in the magnitude and spatial patterns of precipitation minus evaporation (P–E) are consistent with increased water vapor content driven by higher temperatures. While thermodynamics explains most of the observed changes, the contribution of dynamics is not yet well constrained, especially at regional and local scales, due to limitations in observations and climate models. Anthropogenic climate change has also increased the severity and likelihood of contemporaneous droughts in southwestern North America, southwestern South America, the Mediterranean, and the Caribbean. An increased frequency of extreme precipitation events and shifts in phenology has also been attributed to anthropogenic climate change. While considerable uncertainties persist on the role of plant physiology in modulating hydroclimate and vice versa, emerging evidence indicates that increased canopy water demand and longer growing seasons negate the water-saving effects from increased water-use efficiency.