改变水流速度对无玻璃混合光伏/无盖集热器效率的影响:数值研究

Q2 Mathematics
Muna Ali Talib, Adel A. Eidan, Ahmed Hasan Tawfeeq, Fatima Muhammed K. AL- Fatlawe
{"title":"改变水流速度对无玻璃混合光伏/无盖集热器效率的影响:数值研究","authors":"Muna Ali Talib, Adel A. Eidan, Ahmed Hasan Tawfeeq, Fatima Muhammed K. AL- Fatlawe","doi":"10.37934/cfdl.16.2.91104","DOIUrl":null,"url":null,"abstract":"The flat-plate collector is one of the most frequent types of collectors because it is simple to manufacture and it is relatively inexpensive in comparison to other collectors. The primary objective of this work is to improve the collector's efficiency, which can be accomplished by increasing the heat transfer quantitatively. This can be accomplished by increasing the efficiency of the collector. In this research employs hybrid photovoltaic panels through electrical generation and, on the other hand, takes advantage of the lost heat, which has reduced efficiency to useful heat, by transporting them through fluid and benefiting from them through industrial and domestic applications. The model was studied numerically by ANSYS computational code, where simulations were carried out on CFD and steady state thermal, as well as the effect of solar radiation, at a value of 10, on the layer of photovoltaic cells. Besides, several values of flow rate (0.02, 0.025, and 0.03) were used and compared. The current findings show that the efficiency of the current panel under consideration increased significantly, and the value of flow of 0.03 was the optimal value that led to obtaining suitable efficiency and a relatively acceptable water temperature.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Changing the Water Flow Rate on the Efficiency of Hybrid PV/T Uncovered Collectors without Glasses: Numerical Study\",\"authors\":\"Muna Ali Talib, Adel A. Eidan, Ahmed Hasan Tawfeeq, Fatima Muhammed K. AL- Fatlawe\",\"doi\":\"10.37934/cfdl.16.2.91104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flat-plate collector is one of the most frequent types of collectors because it is simple to manufacture and it is relatively inexpensive in comparison to other collectors. The primary objective of this work is to improve the collector's efficiency, which can be accomplished by increasing the heat transfer quantitatively. This can be accomplished by increasing the efficiency of the collector. In this research employs hybrid photovoltaic panels through electrical generation and, on the other hand, takes advantage of the lost heat, which has reduced efficiency to useful heat, by transporting them through fluid and benefiting from them through industrial and domestic applications. The model was studied numerically by ANSYS computational code, where simulations were carried out on CFD and steady state thermal, as well as the effect of solar radiation, at a value of 10, on the layer of photovoltaic cells. Besides, several values of flow rate (0.02, 0.025, and 0.03) were used and compared. The current findings show that the efficiency of the current panel under consideration increased significantly, and the value of flow of 0.03 was the optimal value that led to obtaining suitable efficiency and a relatively acceptable water temperature.\",\"PeriodicalId\":9736,\"journal\":{\"name\":\"CFD Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CFD Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/cfdl.16.2.91104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.2.91104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

平板集热器是最常见的集热器类型之一,因为它制造简单,而且与其他集热器相比相对便宜。这项工作的主要目标是提高集热器的效率,这可以通过增加传热量来实现。这可以通过提高集热器的效率来实现。在这项研究中,一方面通过发电采用了混合光电板,另一方面,通过流体传输将效率降低的损失热量转化为有用热量,并通过工业和家庭应用从中获益。ANSYS 计算代码对该模型进行了数值研究,模拟了 CFD 和稳态热量,以及太阳辐射量(10)对光伏电池层的影响。此外,还使用了几个流速值(0.02、0.025 和 0.03)并进行了比较。目前的研究结果表明,目前所考虑的电池板的效率显著提高,而 0.03 的流量值是最佳值,可获得合适的效率和相对可接受的水温。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Changing the Water Flow Rate on the Efficiency of Hybrid PV/T Uncovered Collectors without Glasses: Numerical Study
The flat-plate collector is one of the most frequent types of collectors because it is simple to manufacture and it is relatively inexpensive in comparison to other collectors. The primary objective of this work is to improve the collector's efficiency, which can be accomplished by increasing the heat transfer quantitatively. This can be accomplished by increasing the efficiency of the collector. In this research employs hybrid photovoltaic panels through electrical generation and, on the other hand, takes advantage of the lost heat, which has reduced efficiency to useful heat, by transporting them through fluid and benefiting from them through industrial and domestic applications. The model was studied numerically by ANSYS computational code, where simulations were carried out on CFD and steady state thermal, as well as the effect of solar radiation, at a value of 10, on the layer of photovoltaic cells. Besides, several values of flow rate (0.02, 0.025, and 0.03) were used and compared. The current findings show that the efficiency of the current panel under consideration increased significantly, and the value of flow of 0.03 was the optimal value that led to obtaining suitable efficiency and a relatively acceptable water temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信