升高的气温和二氧化碳对粳稻(Oryza sativa L.)生长、产量和产量成分的综合影响

IF 1.1 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
Masahiro Yamaguchi, Nobuyuki Tazoe, Tomoki Nakayama, Tetsushi Yonekura, Takeshi Izuta, Yoshihisa Kohno
{"title":"升高的气温和二氧化碳对粳稻(Oryza sativa L.)生长、产量和产量成分的综合影响","authors":"Masahiro Yamaguchi,&nbsp;Nobuyuki Tazoe,&nbsp;Tomoki Nakayama,&nbsp;Tetsushi Yonekura,&nbsp;Takeshi Izuta,&nbsp;Yoshihisa Kohno","doi":"10.1007/s44273-023-00019-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the region where heat stress has become evident, the elevation of air temperature could reduce yield of heat stress-susceptible crops, such as rice (<i>Oryza sativa</i> L.), which is a major food staple in Asia. In addition to air temperature, atmospheric CO<sub>2</sub> is projected to be elevated in the future. To project rice yield in the future, it is necessary to clarify the responses of rice to concurrent elevations of air temperature and atmospheric CO<sub>2</sub>. In the present study, two japonica rice cultivars with different heat tolerance, Hinohikari (sensitive) and Nikomaru (tolerant), were grown in pots inside open-top chambers and exposed to elevated air temperature and/or CO<sub>2</sub>. The degrees of increase in the air temperature and CO<sub>2</sub> concentration by the treatments were approximately 1 °C and 120 µmol mol<sup>−1</sup> (ppm). The study was conducted in Nagasaki, Japan, where heat stress on rice has become evident. Elevated air temperature significantly decreased both whole-plant growth and grain yield. Elevated CO<sub>2</sub> significantly increased the growth but significantly decreased the yield. The effects of elevated air temperature and elevated CO<sub>2</sub> on growth and yield did not significantly differ between two cultivars. In both cultivars, the main cause of yield reduction by both treatments was reduction in spikelet fertility, which is typical heat stress on rice. The elevated CO<sub>2</sub>-induced reduction in spikelet fertility could be explained partially by high-temperature regime during flowering due to acceleration of heading and by increase in canopy temperature via stomatal closure in flag leaves. Because elevated air temperature and elevated CO<sub>2</sub> treatments additively reduced spikelet fertility in both cultivars, concurrent elevations of air temperature and CO<sub>2</sub> caused considerable reduction in grain yield.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-023-00019-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Combined effects of elevated air temperature and CO2 on growth, yield, and yield components of japonica rice (Oryza sativa L.)\",\"authors\":\"Masahiro Yamaguchi,&nbsp;Nobuyuki Tazoe,&nbsp;Tomoki Nakayama,&nbsp;Tetsushi Yonekura,&nbsp;Takeshi Izuta,&nbsp;Yoshihisa Kohno\",\"doi\":\"10.1007/s44273-023-00019-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the region where heat stress has become evident, the elevation of air temperature could reduce yield of heat stress-susceptible crops, such as rice (<i>Oryza sativa</i> L.), which is a major food staple in Asia. In addition to air temperature, atmospheric CO<sub>2</sub> is projected to be elevated in the future. To project rice yield in the future, it is necessary to clarify the responses of rice to concurrent elevations of air temperature and atmospheric CO<sub>2</sub>. In the present study, two japonica rice cultivars with different heat tolerance, Hinohikari (sensitive) and Nikomaru (tolerant), were grown in pots inside open-top chambers and exposed to elevated air temperature and/or CO<sub>2</sub>. The degrees of increase in the air temperature and CO<sub>2</sub> concentration by the treatments were approximately 1 °C and 120 µmol mol<sup>−1</sup> (ppm). The study was conducted in Nagasaki, Japan, where heat stress on rice has become evident. Elevated air temperature significantly decreased both whole-plant growth and grain yield. Elevated CO<sub>2</sub> significantly increased the growth but significantly decreased the yield. The effects of elevated air temperature and elevated CO<sub>2</sub> on growth and yield did not significantly differ between two cultivars. In both cultivars, the main cause of yield reduction by both treatments was reduction in spikelet fertility, which is typical heat stress on rice. The elevated CO<sub>2</sub>-induced reduction in spikelet fertility could be explained partially by high-temperature regime during flowering due to acceleration of heading and by increase in canopy temperature via stomatal closure in flag leaves. Because elevated air temperature and elevated CO<sub>2</sub> treatments additively reduced spikelet fertility in both cultivars, concurrent elevations of air temperature and CO<sub>2</sub> caused considerable reduction in grain yield.</p></div>\",\"PeriodicalId\":45358,\"journal\":{\"name\":\"Asian Journal of Atmospheric Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44273-023-00019-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Atmospheric Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44273-023-00019-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-023-00019-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在热胁迫明显的地区,气温升高可能会使易受热胁迫影响的作物减产,如亚洲的主要粮食作物水稻(Oryza sativa L.)。除气温外,预计未来大气中的二氧化碳也会升高。为了预测未来的水稻产量,有必要明确水稻对气温和大气二氧化碳同时升高的反应。在本研究中,两个具有不同耐热性的粳稻栽培品种 Hinohikari(敏感)和 Nikomaru(耐热)被种植在开顶室内的花盆中,并暴露于升高的气温和/或二氧化碳中。各处理的气温和二氧化碳浓度的升高幅度分别约为 1 °C 和 120 µmol mol-1 (ppm)。这项研究是在日本长崎进行的,那里的水稻明显受到热胁迫。气温升高会明显降低全株生长和谷物产量。二氧化碳浓度升高会明显提高生长速度,但会明显降低产量。气温升高和二氧化碳升高对两个栽培品种的生长和产量的影响没有明显差异。在这两个品种中,两种处理导致减产的主要原因是小穗生育力下降,这是水稻典型的热胁迫。二氧化碳升高引起的小穗结实率降低的部分原因可能是开花期高温加速了抽穗,以及旗叶气孔关闭导致冠层温度升高。由于气温升高和二氧化碳升高会叠加降低两个品种的小穗结实率,因此气温和二氧化碳同时升高会导致谷物产量大幅下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined effects of elevated air temperature and CO2 on growth, yield, and yield components of japonica rice (Oryza sativa L.)

In the region where heat stress has become evident, the elevation of air temperature could reduce yield of heat stress-susceptible crops, such as rice (Oryza sativa L.), which is a major food staple in Asia. In addition to air temperature, atmospheric CO2 is projected to be elevated in the future. To project rice yield in the future, it is necessary to clarify the responses of rice to concurrent elevations of air temperature and atmospheric CO2. In the present study, two japonica rice cultivars with different heat tolerance, Hinohikari (sensitive) and Nikomaru (tolerant), were grown in pots inside open-top chambers and exposed to elevated air temperature and/or CO2. The degrees of increase in the air temperature and CO2 concentration by the treatments were approximately 1 °C and 120 µmol mol−1 (ppm). The study was conducted in Nagasaki, Japan, where heat stress on rice has become evident. Elevated air temperature significantly decreased both whole-plant growth and grain yield. Elevated CO2 significantly increased the growth but significantly decreased the yield. The effects of elevated air temperature and elevated CO2 on growth and yield did not significantly differ between two cultivars. In both cultivars, the main cause of yield reduction by both treatments was reduction in spikelet fertility, which is typical heat stress on rice. The elevated CO2-induced reduction in spikelet fertility could be explained partially by high-temperature regime during flowering due to acceleration of heading and by increase in canopy temperature via stomatal closure in flag leaves. Because elevated air temperature and elevated CO2 treatments additively reduced spikelet fertility in both cultivars, concurrent elevations of air temperature and CO2 caused considerable reduction in grain yield.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Atmospheric Environment
Asian Journal of Atmospheric Environment METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.80
自引率
6.70%
发文量
22
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信