中性公设空间中相容映射族的常见定点定理

Umar Ishtiaq, Khaleel Ahmad, Farhan Ali, Moazzama Faraz, I. Argyros
{"title":"中性公设空间中相容映射族的常见定点定理","authors":"Umar Ishtiaq, Khaleel Ahmad, Farhan Ali, Moazzama Faraz, I. Argyros","doi":"10.3390/foundations3040042","DOIUrl":null,"url":null,"abstract":"Sets, probability, and neutrosophic logic are all topics covered by neutrosophy. Moreover, the classical set, fuzzy set, and intuitionistic fuzzy set are generalized using the neutrosophic set. A neutrosophic set is a mathematical concept used to solve problems with inconsistent, ambiguous, and inaccurate data. In this article, we demonstrate some basic fixed-point theorems for any even number of compatible mappings in complete neutrosophic metric spaces. Our primary findings expand and generalize the findings previously established in the literature.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common Fixed-Point Theorems for Families of Compatible Mappings in Neutrosophic Metric Spaces\",\"authors\":\"Umar Ishtiaq, Khaleel Ahmad, Farhan Ali, Moazzama Faraz, I. Argyros\",\"doi\":\"10.3390/foundations3040042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sets, probability, and neutrosophic logic are all topics covered by neutrosophy. Moreover, the classical set, fuzzy set, and intuitionistic fuzzy set are generalized using the neutrosophic set. A neutrosophic set is a mathematical concept used to solve problems with inconsistent, ambiguous, and inaccurate data. In this article, we demonstrate some basic fixed-point theorems for any even number of compatible mappings in complete neutrosophic metric spaces. Our primary findings expand and generalize the findings previously established in the literature.\",\"PeriodicalId\":81291,\"journal\":{\"name\":\"Foundations\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foundations3040042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations3040042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

集合、概率和中性逻辑都是中性哲学涵盖的主题。此外,经典集合、模糊集合和直觉模糊集合都是用中性集合来概括的。中性集是一个数学概念,用于解决数据不一致、模糊和不准确的问题。在本文中,我们证明了完整中性度量空间中任意偶数兼容映射的一些基本定点定理。我们的主要发现扩展并概括了之前文献中的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common Fixed-Point Theorems for Families of Compatible Mappings in Neutrosophic Metric Spaces
Sets, probability, and neutrosophic logic are all topics covered by neutrosophy. Moreover, the classical set, fuzzy set, and intuitionistic fuzzy set are generalized using the neutrosophic set. A neutrosophic set is a mathematical concept used to solve problems with inconsistent, ambiguous, and inaccurate data. In this article, we demonstrate some basic fixed-point theorems for any even number of compatible mappings in complete neutrosophic metric spaces. Our primary findings expand and generalize the findings previously established in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信