Qianwei Xu , Jinli Xie , Linhai Lu , Yongji Wang , Chaojun Wu , Qiang Meng
{"title":"预制桩作为深基坑支护的土拱效应的数值和理论分析","authors":"Qianwei Xu , Jinli Xie , Linhai Lu , Yongji Wang , Chaojun Wu , Qiang Meng","doi":"10.1016/j.undsp.2023.09.011","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a detailed investigation into the soil arching effects within deep foundation pits (DFPs), focusing on their mechanical behavior and implications for structural design. Through rigorous 3D finite element modeling and parameter sensitivity analyses, the research explores the formation, geometric characteristics, and spatial distribution of soil arching phenomena. The investigation encompasses the influence of key parameters such as elastic modulus, cohesion, and internal friction angle on the soil arching effect. The findings reveal that soil arching within DFPs exhibits distinct spatial characteristics, with the prominent arch axis shifting as excavation depth progresses. Optimal soil arching is observed when the pile spacing approximates three times the pile diameter, enhancing soil retention and minimizing deformation risks. Sensitivity analyses highlight the significant impact of soil parameters on soil arching behavior, underscoring the critical role of cohesive forces and internal friction angles in shaping arching characteristics. By elucidating the interplay between soil parameters and soil arching effects, the research provides insights for optimizing pile spacing and structural stability.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"16 ","pages":"Pages 314-330"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001708/pdfft?md5=4584d1865983974942aee3ee1d28ca52&pid=1-s2.0-S2467967423001708-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical and theoretical analysis on soil arching effect of prefabricated piles as deep foundation pit supports\",\"authors\":\"Qianwei Xu , Jinli Xie , Linhai Lu , Yongji Wang , Chaojun Wu , Qiang Meng\",\"doi\":\"10.1016/j.undsp.2023.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a detailed investigation into the soil arching effects within deep foundation pits (DFPs), focusing on their mechanical behavior and implications for structural design. Through rigorous 3D finite element modeling and parameter sensitivity analyses, the research explores the formation, geometric characteristics, and spatial distribution of soil arching phenomena. The investigation encompasses the influence of key parameters such as elastic modulus, cohesion, and internal friction angle on the soil arching effect. The findings reveal that soil arching within DFPs exhibits distinct spatial characteristics, with the prominent arch axis shifting as excavation depth progresses. Optimal soil arching is observed when the pile spacing approximates three times the pile diameter, enhancing soil retention and minimizing deformation risks. Sensitivity analyses highlight the significant impact of soil parameters on soil arching behavior, underscoring the critical role of cohesive forces and internal friction angles in shaping arching characteristics. By elucidating the interplay between soil parameters and soil arching effects, the research provides insights for optimizing pile spacing and structural stability.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"16 \",\"pages\":\"Pages 314-330\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967423001708/pdfft?md5=4584d1865983974942aee3ee1d28ca52&pid=1-s2.0-S2467967423001708-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967423001708\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967423001708","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical and theoretical analysis on soil arching effect of prefabricated piles as deep foundation pit supports
This study presents a detailed investigation into the soil arching effects within deep foundation pits (DFPs), focusing on their mechanical behavior and implications for structural design. Through rigorous 3D finite element modeling and parameter sensitivity analyses, the research explores the formation, geometric characteristics, and spatial distribution of soil arching phenomena. The investigation encompasses the influence of key parameters such as elastic modulus, cohesion, and internal friction angle on the soil arching effect. The findings reveal that soil arching within DFPs exhibits distinct spatial characteristics, with the prominent arch axis shifting as excavation depth progresses. Optimal soil arching is observed when the pile spacing approximates three times the pile diameter, enhancing soil retention and minimizing deformation risks. Sensitivity analyses highlight the significant impact of soil parameters on soil arching behavior, underscoring the critical role of cohesive forces and internal friction angles in shaping arching characteristics. By elucidating the interplay between soil parameters and soil arching effects, the research provides insights for optimizing pile spacing and structural stability.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.