使用能量守恒离散方案的浅水方程控制导向模型

PAMM Pub Date : 2023-12-01 DOI:10.1002/pamm.202300267
Luca Mayer, Jens Wurm, F. Woittennek
{"title":"使用能量守恒离散方案的浅水方程控制导向模型","authors":"Luca Mayer, Jens Wurm, F. Woittennek","doi":"10.1002/pamm.202300267","DOIUrl":null,"url":null,"abstract":"In this study, we introduce higher‐order approximation schemes for a 1D shallow‐water model with a moving boundary and arbitrary cross‐section. The model equations are formulated using Lagrange coordinates to handle the time‐varying spatial domain. By discretizing the action functional on a material‐fixed grid and applying an appropriate quadrature scheme, we derive a finite‐dimensional model. This model, taking mass conservation into account as an auxiliary condition, results in a system of semi‐explicit differential‐algebraic equations (DAE). Unlike previous work, we employ higher‐order quadrature formulae to enhance numerical accuracy, albeit at the cost of more complex nonlinear DAE. In order to compare the performance of the resulting models obtained from using different quadrature schemes, a comprehensive simulation study is conducted.","PeriodicalId":510616,"journal":{"name":"PAMM","volume":"363 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control‐oriented models of the shallow water equations using energy‐conserving discretization schemes\",\"authors\":\"Luca Mayer, Jens Wurm, F. Woittennek\",\"doi\":\"10.1002/pamm.202300267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce higher‐order approximation schemes for a 1D shallow‐water model with a moving boundary and arbitrary cross‐section. The model equations are formulated using Lagrange coordinates to handle the time‐varying spatial domain. By discretizing the action functional on a material‐fixed grid and applying an appropriate quadrature scheme, we derive a finite‐dimensional model. This model, taking mass conservation into account as an auxiliary condition, results in a system of semi‐explicit differential‐algebraic equations (DAE). Unlike previous work, we employ higher‐order quadrature formulae to enhance numerical accuracy, albeit at the cost of more complex nonlinear DAE. In order to compare the performance of the resulting models obtained from using different quadrature schemes, a comprehensive simulation study is conducted.\",\"PeriodicalId\":510616,\"journal\":{\"name\":\"PAMM\",\"volume\":\"363 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PAMM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pamm.202300267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pamm.202300267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们为具有移动边界和任意横截面的一维浅水模型引入了高阶近似方案。模型方程采用拉格朗日坐标来处理时变空间域。通过在材料固定的网格上对作用函数进行离散化,并应用适当的正交方案,我们得出了一个有限维模型。该模型将质量守恒作为辅助条件考虑在内,形成了一个半显式微分代数方程(DAE)系统。与以往工作不同的是,我们采用了高阶正交公式来提高数值精度,但代价是非线性 DAE 更加复杂。为了比较使用不同正交方案得到的模型的性能,我们进行了全面的模拟研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control‐oriented models of the shallow water equations using energy‐conserving discretization schemes
In this study, we introduce higher‐order approximation schemes for a 1D shallow‐water model with a moving boundary and arbitrary cross‐section. The model equations are formulated using Lagrange coordinates to handle the time‐varying spatial domain. By discretizing the action functional on a material‐fixed grid and applying an appropriate quadrature scheme, we derive a finite‐dimensional model. This model, taking mass conservation into account as an auxiliary condition, results in a system of semi‐explicit differential‐algebraic equations (DAE). Unlike previous work, we employ higher‐order quadrature formulae to enhance numerical accuracy, albeit at the cost of more complex nonlinear DAE. In order to compare the performance of the resulting models obtained from using different quadrature schemes, a comprehensive simulation study is conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信