局部开洞对盾构隧道节段承载行为和破坏机理的影响

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL
Xiaojing Gao , Pengfei Li , Mingju Zhang , Haifeng Wang , Ziqi Jia , Wu Feng
{"title":"局部开洞对盾构隧道节段承载行为和破坏机理的影响","authors":"Xiaojing Gao ,&nbsp;Pengfei Li ,&nbsp;Mingju Zhang ,&nbsp;Haifeng Wang ,&nbsp;Ziqi Jia ,&nbsp;Wu Feng","doi":"10.1016/j.undsp.2023.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>Local failures (loss of concrete or reinforcement) can severely compromise the bearing capacity of shield segments, damaging the tunnel structures. To investigate the effects of local openings on the bearing behavior and failure mechanism, four full-scale bending tests were conducted on specimens with different opening positions and diameters; monitoring of load, displacement, and concrete strain was performed during loading. The test results reveal that both the opening position and diameter significantly influence the bearing characteristics of the segment. The failure process includes four sequential stages distinguished by three critical loads, namely the cracking, failure, and ultimate loads. Subsequently, the numerical model of the local failure segment was established using the elastoplastic damage constitutive relation of the concrete and verified by inversing the full-scale test results. Based on the numerical model, parametric analyses were performed to comprehensively investigate the influences of the opening position, concrete loss, and reinforcement loss on the bending capacity. Furthermore, an analytical model was proposed, indicating that the opening position is the primary factor decreasing the bearing capacity, followed by the opening diameter and reinforcement loss. The results of this study can provide a theoretical basis for the safety assessment and remedial design of subway shield tunnels under extreme breakthrough conditions.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"16 ","pages":"Pages 183-205"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246796742300171X/pdfft?md5=a50c50042e4dfc70bb4fa4dbd143acb9&pid=1-s2.0-S246796742300171X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of local openings on bearing behavior and failure mechanism of shield tunnel segments\",\"authors\":\"Xiaojing Gao ,&nbsp;Pengfei Li ,&nbsp;Mingju Zhang ,&nbsp;Haifeng Wang ,&nbsp;Ziqi Jia ,&nbsp;Wu Feng\",\"doi\":\"10.1016/j.undsp.2023.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Local failures (loss of concrete or reinforcement) can severely compromise the bearing capacity of shield segments, damaging the tunnel structures. To investigate the effects of local openings on the bearing behavior and failure mechanism, four full-scale bending tests were conducted on specimens with different opening positions and diameters; monitoring of load, displacement, and concrete strain was performed during loading. The test results reveal that both the opening position and diameter significantly influence the bearing characteristics of the segment. The failure process includes four sequential stages distinguished by three critical loads, namely the cracking, failure, and ultimate loads. Subsequently, the numerical model of the local failure segment was established using the elastoplastic damage constitutive relation of the concrete and verified by inversing the full-scale test results. Based on the numerical model, parametric analyses were performed to comprehensively investigate the influences of the opening position, concrete loss, and reinforcement loss on the bending capacity. Furthermore, an analytical model was proposed, indicating that the opening position is the primary factor decreasing the bearing capacity, followed by the opening diameter and reinforcement loss. The results of this study can provide a theoretical basis for the safety assessment and remedial design of subway shield tunnels under extreme breakthrough conditions.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"16 \",\"pages\":\"Pages 183-205\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S246796742300171X/pdfft?md5=a50c50042e4dfc70bb4fa4dbd143acb9&pid=1-s2.0-S246796742300171X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246796742300171X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246796742300171X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

局部失效(混凝土或钢筋脱落)会严重影响盾构区间的承载能力,破坏隧道结构。为了研究局部开孔对承载行为和破坏机制的影响,对不同开孔位置和直径的试件进行了四次全尺寸弯曲试验,并在加载过程中对荷载、位移和混凝土应变进行了监测。试验结果表明,开口位置和直径都会对段的承载特性产生重大影响。破坏过程包括四个连续阶段,由三个临界载荷区分,即开裂、破坏和极限载荷。随后,利用混凝土的弹塑性损伤构成关系建立了局部破坏段的数值模型,并通过反演全尺寸试验结果进行了验证。在数值模型的基础上,进行了参数分析,全面研究了开口位置、混凝土损失和钢筋损失对抗弯能力的影响。此外,还提出了一个分析模型,表明开口位置是降低承载力的主要因素,其次是开口直径和钢筋损耗。该研究结果可为极端破土条件下地铁盾构隧道的安全评估和补救设计提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of local openings on bearing behavior and failure mechanism of shield tunnel segments

Effect of local openings on bearing behavior and failure mechanism of shield tunnel segments

Local failures (loss of concrete or reinforcement) can severely compromise the bearing capacity of shield segments, damaging the tunnel structures. To investigate the effects of local openings on the bearing behavior and failure mechanism, four full-scale bending tests were conducted on specimens with different opening positions and diameters; monitoring of load, displacement, and concrete strain was performed during loading. The test results reveal that both the opening position and diameter significantly influence the bearing characteristics of the segment. The failure process includes four sequential stages distinguished by three critical loads, namely the cracking, failure, and ultimate loads. Subsequently, the numerical model of the local failure segment was established using the elastoplastic damage constitutive relation of the concrete and verified by inversing the full-scale test results. Based on the numerical model, parametric analyses were performed to comprehensively investigate the influences of the opening position, concrete loss, and reinforcement loss on the bending capacity. Furthermore, an analytical model was proposed, indicating that the opening position is the primary factor decreasing the bearing capacity, followed by the opening diameter and reinforcement loss. The results of this study can provide a theoretical basis for the safety assessment and remedial design of subway shield tunnels under extreme breakthrough conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信