Amal Mlhem , Thomas Teklebrhan , Evenezer Bokuretsion , Basim Abu-Jdayil
{"title":"开发基于填充枣核的生物聚酯的可持续隔热材料","authors":"Amal Mlhem , Thomas Teklebrhan , Evenezer Bokuretsion , Basim Abu-Jdayil","doi":"10.1016/j.jobab.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Date palm pit (DPP)-filled poly (-hydroxybutyrate) (PHB) composites were prepared, evaluated, and characterized to determine their thermal insulation ability. Thermal conductivity values ranged between 0.086 and 0.100 W/(m·K). At a maximum filler concentration (50% (<em>w</em>)), the specific heat capacity and thermal diffusivity were 1 183 J/(kg·K) and 0.068 9 mm<sup>2</sup>/s, respectively. The DPP increased the thermal stability, and the highest compressive strength obtained was 80 MPa at 30% filler content. The PHB-DPP composites exhibited promising water absorption (less than 6%) and tensile strength (6–14 MPa). Date-pit-based PHB composites could be used in sustainable building engineering and cleaner production.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2369969823000786/pdfft?md5=8182a43f6405efc32ae5f51961c677f4&pid=1-s2.0-S2369969823000786-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of sustainable thermal insulation based on bio-polyester filled with date pits\",\"authors\":\"Amal Mlhem , Thomas Teklebrhan , Evenezer Bokuretsion , Basim Abu-Jdayil\",\"doi\":\"10.1016/j.jobab.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Date palm pit (DPP)-filled poly (-hydroxybutyrate) (PHB) composites were prepared, evaluated, and characterized to determine their thermal insulation ability. Thermal conductivity values ranged between 0.086 and 0.100 W/(m·K). At a maximum filler concentration (50% (<em>w</em>)), the specific heat capacity and thermal diffusivity were 1 183 J/(kg·K) and 0.068 9 mm<sup>2</sup>/s, respectively. The DPP increased the thermal stability, and the highest compressive strength obtained was 80 MPa at 30% filler content. The PHB-DPP composites exhibited promising water absorption (less than 6%) and tensile strength (6–14 MPa). Date-pit-based PHB composites could be used in sustainable building engineering and cleaner production.</p></div>\",\"PeriodicalId\":52344,\"journal\":{\"name\":\"Journal of Bioresources and Bioproducts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2369969823000786/pdfft?md5=8182a43f6405efc32ae5f51961c677f4&pid=1-s2.0-S2369969823000786-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioresources and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2369969823000786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969823000786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Development of sustainable thermal insulation based on bio-polyester filled with date pits
Date palm pit (DPP)-filled poly (-hydroxybutyrate) (PHB) composites were prepared, evaluated, and characterized to determine their thermal insulation ability. Thermal conductivity values ranged between 0.086 and 0.100 W/(m·K). At a maximum filler concentration (50% (w)), the specific heat capacity and thermal diffusivity were 1 183 J/(kg·K) and 0.068 9 mm2/s, respectively. The DPP increased the thermal stability, and the highest compressive strength obtained was 80 MPa at 30% filler content. The PHB-DPP composites exhibited promising water absorption (less than 6%) and tensile strength (6–14 MPa). Date-pit-based PHB composites could be used in sustainable building engineering and cleaner production.