基于迁移学习的噪声环境下小样本海洋机械诊断方法

IF 11.8 1区 工程技术 Q1 ENGINEERING, MARINE
Yongjin Guo , Chao Gao , Yang Jin , Yintao Li , Jianyao Wang , Qing Li , Hongdong Wang
{"title":"基于迁移学习的噪声环境下小样本海洋机械诊断方法","authors":"Yongjin Guo ,&nbsp;Chao Gao ,&nbsp;Yang Jin ,&nbsp;Yintao Li ,&nbsp;Jianyao Wang ,&nbsp;Qing Li ,&nbsp;Hongdong Wang","doi":"10.1016/j.joes.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>The operating conditions of marine machinery are demanding, and their operational state significantly affects the safety of marine structures. Detecting faults is crucial for machinery health management and necessitates a highly precise diagnostic method. In this paper, we propose a fault diagnosis framework that employs transfer learning and dynamics simulation. A denoising convolutional autoencoder is used to reduce noise when monitoring vibration data in marine environments. To address the challenge of limited sample sizes in marine machinery fault data, a multibody dynamics simulation model is developed to acquire data under fault conditions. The fault features are extracted using a convolutional neural network model. Parameter transfer is applied to enhance the accuracy of fault diagnosis. The effectiveness and applicability of the framework are demonstrated through a case study of a bearing fault dataset.</div></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"10 4","pages":"Pages 593-601"},"PeriodicalIF":11.8000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transfer learning-based method for marine machinery diagnosis with small samples in noisy environments\",\"authors\":\"Yongjin Guo ,&nbsp;Chao Gao ,&nbsp;Yang Jin ,&nbsp;Yintao Li ,&nbsp;Jianyao Wang ,&nbsp;Qing Li ,&nbsp;Hongdong Wang\",\"doi\":\"10.1016/j.joes.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The operating conditions of marine machinery are demanding, and their operational state significantly affects the safety of marine structures. Detecting faults is crucial for machinery health management and necessitates a highly precise diagnostic method. In this paper, we propose a fault diagnosis framework that employs transfer learning and dynamics simulation. A denoising convolutional autoencoder is used to reduce noise when monitoring vibration data in marine environments. To address the challenge of limited sample sizes in marine machinery fault data, a multibody dynamics simulation model is developed to acquire data under fault conditions. The fault features are extracted using a convolutional neural network model. Parameter transfer is applied to enhance the accuracy of fault diagnosis. The effectiveness and applicability of the framework are demonstrated through a case study of a bearing fault dataset.</div></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":\"10 4\",\"pages\":\"Pages 593-601\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246801332300089X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246801332300089X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

船舶机械的运行条件要求很高,其运行状态对船舶结构物的安全有着重要的影响。故障检测是机械健康管理的关键,需要高精度的诊断方法。本文提出了一种基于迁移学习和动态仿真的故障诊断框架。采用去噪卷积自编码器对海洋振动数据进行降噪处理。针对船舶机械故障数据样本数量有限的问题,建立了多体动力学仿真模型来获取故障条件下的数据。采用卷积神经网络模型提取故障特征。采用参数传递技术提高了故障诊断的准确性。以某轴承故障数据集为例,验证了该框架的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A transfer learning-based method for marine machinery diagnosis with small samples in noisy environments
The operating conditions of marine machinery are demanding, and their operational state significantly affects the safety of marine structures. Detecting faults is crucial for machinery health management and necessitates a highly precise diagnostic method. In this paper, we propose a fault diagnosis framework that employs transfer learning and dynamics simulation. A denoising convolutional autoencoder is used to reduce noise when monitoring vibration data in marine environments. To address the challenge of limited sample sizes in marine machinery fault data, a multibody dynamics simulation model is developed to acquire data under fault conditions. The fault features are extracted using a convolutional neural network model. Parameter transfer is applied to enhance the accuracy of fault diagnosis. The effectiveness and applicability of the framework are demonstrated through a case study of a bearing fault dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
19.70%
发文量
224
审稿时长
29 days
期刊介绍: The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science. JOES encourages the submission of papers covering various aspects of ocean engineering and science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信