León-Carlos Dempwolff , Christian Windt , Hans Bihs , Gregor Melling , Ingrid Holzwarth , Nils Goseberg
{"title":"REEF3D 中多保真求解器的流体力学耦合,并应用于船舶诱导波建模","authors":"León-Carlos Dempwolff , Christian Windt , Hans Bihs , Gregor Melling , Ingrid Holzwarth , Nils Goseberg","doi":"10.1016/j.coastaleng.2023.104452","DOIUrl":null,"url":null,"abstract":"<div><p>Ship-induced waves are an increasingly relevant hydrodynamic forcing factor in waterways travelled by large seagoing ships. The discrepancy between the small-scale wave-structure interaction near embankments and the larger-scale wave generation and propagation poses challenges for the prediction of ship-induced waves as a multi-scale problem. Therefore, a novel hydrodynamic coupling interface is presented that allows information transfer from the shallow-water-equation (SWE) solver REEF3D::SFLOW to the 3D-RANS-solver REEF3D::CFD. The implementation consists of a one-way coupling, where the solution from the SWE solver is imposed to one or multiple relaxation zones of the CFD solver. A series of verification cases shows that the implementation of the interface is accurate and only small deviations are introduced due to the 2D-3D dimensional mismatch of the numerical models involved. An application is presented, showing how the coupled SWE-CFD model can be employed to study ship-induced groin overtopping.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"188 ","pages":"Article 104452"},"PeriodicalIF":4.5000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037838392300176X/pdfft?md5=0a4f7d886b220357b3c0b9532cec39a3&pid=1-s2.0-S037838392300176X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic coupling of multi-fidelity solvers in REEF3D with application to ship-induced wave modelling\",\"authors\":\"León-Carlos Dempwolff , Christian Windt , Hans Bihs , Gregor Melling , Ingrid Holzwarth , Nils Goseberg\",\"doi\":\"10.1016/j.coastaleng.2023.104452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ship-induced waves are an increasingly relevant hydrodynamic forcing factor in waterways travelled by large seagoing ships. The discrepancy between the small-scale wave-structure interaction near embankments and the larger-scale wave generation and propagation poses challenges for the prediction of ship-induced waves as a multi-scale problem. Therefore, a novel hydrodynamic coupling interface is presented that allows information transfer from the shallow-water-equation (SWE) solver REEF3D::SFLOW to the 3D-RANS-solver REEF3D::CFD. The implementation consists of a one-way coupling, where the solution from the SWE solver is imposed to one or multiple relaxation zones of the CFD solver. A series of verification cases shows that the implementation of the interface is accurate and only small deviations are introduced due to the 2D-3D dimensional mismatch of the numerical models involved. An application is presented, showing how the coupled SWE-CFD model can be employed to study ship-induced groin overtopping.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"188 \",\"pages\":\"Article 104452\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S037838392300176X/pdfft?md5=0a4f7d886b220357b3c0b9532cec39a3&pid=1-s2.0-S037838392300176X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838392300176X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838392300176X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Hydrodynamic coupling of multi-fidelity solvers in REEF3D with application to ship-induced wave modelling
Ship-induced waves are an increasingly relevant hydrodynamic forcing factor in waterways travelled by large seagoing ships. The discrepancy between the small-scale wave-structure interaction near embankments and the larger-scale wave generation and propagation poses challenges for the prediction of ship-induced waves as a multi-scale problem. Therefore, a novel hydrodynamic coupling interface is presented that allows information transfer from the shallow-water-equation (SWE) solver REEF3D::SFLOW to the 3D-RANS-solver REEF3D::CFD. The implementation consists of a one-way coupling, where the solution from the SWE solver is imposed to one or multiple relaxation zones of the CFD solver. A series of verification cases shows that the implementation of the interface is accurate and only small deviations are introduced due to the 2D-3D dimensional mismatch of the numerical models involved. An application is presented, showing how the coupled SWE-CFD model can be employed to study ship-induced groin overtopping.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.