台风委员会地区台风相关灾害风险预警中的大数据和人工智能应用综述

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Jinping Liu , Jeonghye Lee , Ruide Zhou
{"title":"台风委员会地区台风相关灾害风险预警中的大数据和人工智能应用综述","authors":"Jinping Liu ,&nbsp;Jeonghye Lee ,&nbsp;Ruide Zhou","doi":"10.1016/j.tcrr.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>ESCAP/WMO Typhoon Committee Members are directly or indirectly affected by typhoons every year. Members have accumulated rich experiences dealing with typhoons' negative impact and developed the technologies and measures on typhoon-related disaster risk forecasting and early warning in various ways to reduce the damage caused by typhoon. However, it is still facing many difficulties and challenges to accurately forecast the occurrence of typhoons and warning the potential impacts in an early stage due to the continuously changing weather conditions. With the development of information technology (IT) and computing science, and increasing accumulated hydro-meteorological data in recent decades, scientists, researchers and operationers keep trying to improve forecasting models based on the application of big data and artificial intelligent (AI) technology to promote the capacity of typhoon-related disaster risk forecasting and early warning. This paper reviewed the current status of application of big data and AI technology in the aspect of typhoon-related disaster risk forecasting and early warning, and discussed the challenges and limitations that must be addressed to effectively harness the power of big data and AI technology application in typhoon-related disaster risk reduction in the future.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"12 4","pages":"Pages 341-353"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of big-data and AI application in typhoon-related disaster risk early warning in Typhoon Committee region\",\"authors\":\"Jinping Liu ,&nbsp;Jeonghye Lee ,&nbsp;Ruide Zhou\",\"doi\":\"10.1016/j.tcrr.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>ESCAP/WMO Typhoon Committee Members are directly or indirectly affected by typhoons every year. Members have accumulated rich experiences dealing with typhoons' negative impact and developed the technologies and measures on typhoon-related disaster risk forecasting and early warning in various ways to reduce the damage caused by typhoon. However, it is still facing many difficulties and challenges to accurately forecast the occurrence of typhoons and warning the potential impacts in an early stage due to the continuously changing weather conditions. With the development of information technology (IT) and computing science, and increasing accumulated hydro-meteorological data in recent decades, scientists, researchers and operationers keep trying to improve forecasting models based on the application of big data and artificial intelligent (AI) technology to promote the capacity of typhoon-related disaster risk forecasting and early warning. This paper reviewed the current status of application of big data and AI technology in the aspect of typhoon-related disaster risk forecasting and early warning, and discussed the challenges and limitations that must be addressed to effectively harness the power of big data and AI technology application in typhoon-related disaster risk reduction in the future.</div></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":\"12 4\",\"pages\":\"Pages 341-353\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603223000565\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603223000565","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of big-data and AI application in typhoon-related disaster risk early warning in Typhoon Committee region
ESCAP/WMO Typhoon Committee Members are directly or indirectly affected by typhoons every year. Members have accumulated rich experiences dealing with typhoons' negative impact and developed the technologies and measures on typhoon-related disaster risk forecasting and early warning in various ways to reduce the damage caused by typhoon. However, it is still facing many difficulties and challenges to accurately forecast the occurrence of typhoons and warning the potential impacts in an early stage due to the continuously changing weather conditions. With the development of information technology (IT) and computing science, and increasing accumulated hydro-meteorological data in recent decades, scientists, researchers and operationers keep trying to improve forecasting models based on the application of big data and artificial intelligent (AI) technology to promote the capacity of typhoon-related disaster risk forecasting and early warning. This paper reviewed the current status of application of big data and AI technology in the aspect of typhoon-related disaster risk forecasting and early warning, and discussed the challenges and limitations that must be addressed to effectively harness the power of big data and AI technology application in typhoon-related disaster risk reduction in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信