神经网络在农工企业控制系统设计中的应用

Aleksandr Grachev
{"title":"神经网络在农工企业控制系统设计中的应用","authors":"Aleksandr Grachev","doi":"10.21603/2073-4018-2023-4-18","DOIUrl":null,"url":null,"abstract":"The paper introduces a comprehensive review of various approaches to using neural networks in the design of control systems for closed-end agricultural facilities. The empirical part of the study featured technical statistics of agro-industrial enterprises. It applied trained neural networks to agricultural enterprise data for prediction purposes. The resulting root mean square error was 0.120, and the standard deviation did not exceed 0.093. Neural networks proved efficient as part of specialized software for monitoring technical objects of the agro-industrial complex and predicting their development.","PeriodicalId":505709,"journal":{"name":"Cheese- and buttermaking","volume":"110 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Networks in Designing Control Systems for Agro-Industrial Enterprises\",\"authors\":\"Aleksandr Grachev\",\"doi\":\"10.21603/2073-4018-2023-4-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a comprehensive review of various approaches to using neural networks in the design of control systems for closed-end agricultural facilities. The empirical part of the study featured technical statistics of agro-industrial enterprises. It applied trained neural networks to agricultural enterprise data for prediction purposes. The resulting root mean square error was 0.120, and the standard deviation did not exceed 0.093. Neural networks proved efficient as part of specialized software for monitoring technical objects of the agro-industrial complex and predicting their development.\",\"PeriodicalId\":505709,\"journal\":{\"name\":\"Cheese- and buttermaking\",\"volume\":\"110 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cheese- and buttermaking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21603/2073-4018-2023-4-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cheese- and buttermaking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2073-4018-2023-4-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

论文全面回顾了在封闭式农业设施控制系统设计中使用神经网络的各种方法。研究的实证部分以农工企业的技术统计为特色。它将训练有素的神经网络用于农业企业数据的预测。结果均方根误差为 0.120,标准偏差不超过 0.093。事实证明,神经网络作为监测农工综合体技术对象和预测其发展的专用软件的一部分是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Networks in Designing Control Systems for Agro-Industrial Enterprises
The paper introduces a comprehensive review of various approaches to using neural networks in the design of control systems for closed-end agricultural facilities. The empirical part of the study featured technical statistics of agro-industrial enterprises. It applied trained neural networks to agricultural enterprise data for prediction purposes. The resulting root mean square error was 0.120, and the standard deviation did not exceed 0.093. Neural networks proved efficient as part of specialized software for monitoring technical objects of the agro-industrial complex and predicting their development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信