使用多项式最大化方法估计具有移动平均值的非高斯不对称过程的参数 PMM

Serhii W. Zabolotnii, Z. Warsza, Oleksandr M. Tkachenko
{"title":"使用多项式最大化方法估计具有移动平均值的非高斯不对称过程的参数 PMM","authors":"Serhii W. Zabolotnii, Z. Warsza, Oleksandr M. Tkachenko","doi":"10.14313/par_250/71","DOIUrl":null,"url":null,"abstract":"In this paper consider is the application of the Polynomial Maximization Method PMM to find estimates of the parameters of non-Gaussian Moving Average model. This approach is adaptive and is based on the analysis of higher-order statistics. The case of asymmetry of distributions of Moving Average of the stochastic processes is also considered. It is shown that the asymptotic variance of estimates of the Polynomial Maximization Method (2nd order) have such analytical expressions, whose allow to finding estimates and analyzing their uncertainties. Above approach can be significantly less than the variance of the classic estimates based on minimizing the Conditional Sum of Squares or Maximum Likelihood (in the Gaussian case). The increase of accuracy depends on the values of the coefficient’s asymmetry and the kurtosis of residuals. The results of statistical modeling by the Monte Carlo Method confirm the effectiveness of the proposed approach.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Parameters of Non-Gaussian Asymmetric Processes with a Moving Average Using the Polynomial Maximization Method PMM\",\"authors\":\"Serhii W. Zabolotnii, Z. Warsza, Oleksandr M. Tkachenko\",\"doi\":\"10.14313/par_250/71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper consider is the application of the Polynomial Maximization Method PMM to find estimates of the parameters of non-Gaussian Moving Average model. This approach is adaptive and is based on the analysis of higher-order statistics. The case of asymmetry of distributions of Moving Average of the stochastic processes is also considered. It is shown that the asymptotic variance of estimates of the Polynomial Maximization Method (2nd order) have such analytical expressions, whose allow to finding estimates and analyzing their uncertainties. Above approach can be significantly less than the variance of the classic estimates based on minimizing the Conditional Sum of Squares or Maximum Likelihood (in the Gaussian case). The increase of accuracy depends on the values of the coefficient’s asymmetry and the kurtosis of residuals. The results of statistical modeling by the Monte Carlo Method confirm the effectiveness of the proposed approach.\",\"PeriodicalId\":383231,\"journal\":{\"name\":\"Pomiary Automatyka Robotyka\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pomiary Automatyka Robotyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/par_250/71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pomiary Automatyka Robotyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/par_250/71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑应用多项式最大化方法 PMM 来寻找非高斯移动平均模型参数的估计值。这种方法是自适应的,以高阶统计分析为基础。还考虑了随机过程移动平均分布不对称的情况。结果表明,多项式最大化方法(二阶)估计值的渐近方差有这样的分析表达式,可以找到估计值并分析其不确定性。上述方法的方差明显小于基于条件平方和最小化或最大似然法(高斯情况下)的传统估计方差。精度的提高取决于系数的不对称值和残差的峰度。蒙特卡洛法的统计建模结果证实了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Parameters of Non-Gaussian Asymmetric Processes with a Moving Average Using the Polynomial Maximization Method PMM
In this paper consider is the application of the Polynomial Maximization Method PMM to find estimates of the parameters of non-Gaussian Moving Average model. This approach is adaptive and is based on the analysis of higher-order statistics. The case of asymmetry of distributions of Moving Average of the stochastic processes is also considered. It is shown that the asymptotic variance of estimates of the Polynomial Maximization Method (2nd order) have such analytical expressions, whose allow to finding estimates and analyzing their uncertainties. Above approach can be significantly less than the variance of the classic estimates based on minimizing the Conditional Sum of Squares or Maximum Likelihood (in the Gaussian case). The increase of accuracy depends on the values of the coefficient’s asymmetry and the kurtosis of residuals. The results of statistical modeling by the Monte Carlo Method confirm the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信