Bálint Alács, Anna Zrinyi, Gábor Hornyánszky, László Poppe, Evelin Bell
{"title":"通过亲和功能掺杂提升酶固定化环氧支撑物的性能--以来自脆皮草的苯丙氨酸氨化-裂解酶为例进行研究","authors":"Bálint Alács, Anna Zrinyi, Gábor Hornyánszky, László Poppe, Evelin Bell","doi":"10.3390/catal14010014","DOIUrl":null,"url":null,"abstract":"This article provides a method to upgrade epoxy-functionalized carriers for covalent enzyme immobilization to selective carriers suitable for covalent immobilization of metal affinity-tagged enzymes without the need of preliminary enzyme purification. Affinity function doping of the epoxy-functionalized surface introduces an advanced possibility to avoid the costly and time-consuming downstream processes required for efficient immobilization on non-selective epoxy carriers. Our approach is based on the partial functionalization of surface epoxides via a proper diamine-derived linker and an ethylenediaminetetraacetic dianhydride-based chelator charged with cobalt ions. The solid macroporous carriers, doped with metal affinity functions, have both coordinative binding ability (rapid anchoring the metal affinity-tagged enzymes to the surface) and subsequent covalent bond-forming ability (preferred binding of the tagged enzyme to the surface after proper washing by the residual epoxide functions), enabling a single operation for the enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag. The immobilized PcPAL was applied in the ammonia elimination of racemic phenylalanine, 4-chlorophenylalanine, and 4-bromophenylalanine to produce the corresponding d-phenylalanines, in addition to the formation of (E)-cinnamates, as well as in ammonia addition reactions to (E)-cinnamates, yielding the corresponding enantiopure l-phenylalanines.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"257 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upgrading Epoxy Supports for Enzyme Immobilization by Affinity Function Doping—A Case Study with Phenylalanine Ammonia-Lyase from Petroselinum crispum\",\"authors\":\"Bálint Alács, Anna Zrinyi, Gábor Hornyánszky, László Poppe, Evelin Bell\",\"doi\":\"10.3390/catal14010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides a method to upgrade epoxy-functionalized carriers for covalent enzyme immobilization to selective carriers suitable for covalent immobilization of metal affinity-tagged enzymes without the need of preliminary enzyme purification. Affinity function doping of the epoxy-functionalized surface introduces an advanced possibility to avoid the costly and time-consuming downstream processes required for efficient immobilization on non-selective epoxy carriers. Our approach is based on the partial functionalization of surface epoxides via a proper diamine-derived linker and an ethylenediaminetetraacetic dianhydride-based chelator charged with cobalt ions. The solid macroporous carriers, doped with metal affinity functions, have both coordinative binding ability (rapid anchoring the metal affinity-tagged enzymes to the surface) and subsequent covalent bond-forming ability (preferred binding of the tagged enzyme to the surface after proper washing by the residual epoxide functions), enabling a single operation for the enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag. The immobilized PcPAL was applied in the ammonia elimination of racemic phenylalanine, 4-chlorophenylalanine, and 4-bromophenylalanine to produce the corresponding d-phenylalanines, in addition to the formation of (E)-cinnamates, as well as in ammonia addition reactions to (E)-cinnamates, yielding the corresponding enantiopure l-phenylalanines.\",\"PeriodicalId\":9794,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"257 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14010014\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14010014","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Upgrading Epoxy Supports for Enzyme Immobilization by Affinity Function Doping—A Case Study with Phenylalanine Ammonia-Lyase from Petroselinum crispum
This article provides a method to upgrade epoxy-functionalized carriers for covalent enzyme immobilization to selective carriers suitable for covalent immobilization of metal affinity-tagged enzymes without the need of preliminary enzyme purification. Affinity function doping of the epoxy-functionalized surface introduces an advanced possibility to avoid the costly and time-consuming downstream processes required for efficient immobilization on non-selective epoxy carriers. Our approach is based on the partial functionalization of surface epoxides via a proper diamine-derived linker and an ethylenediaminetetraacetic dianhydride-based chelator charged with cobalt ions. The solid macroporous carriers, doped with metal affinity functions, have both coordinative binding ability (rapid anchoring the metal affinity-tagged enzymes to the surface) and subsequent covalent bond-forming ability (preferred binding of the tagged enzyme to the surface after proper washing by the residual epoxide functions), enabling a single operation for the enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag. The immobilized PcPAL was applied in the ammonia elimination of racemic phenylalanine, 4-chlorophenylalanine, and 4-bromophenylalanine to produce the corresponding d-phenylalanines, in addition to the formation of (E)-cinnamates, as well as in ammonia addition reactions to (E)-cinnamates, yielding the corresponding enantiopure l-phenylalanines.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.