{"title":"硫酸软骨素及其纳米材料在骨修复和骨重塑中的应用简评","authors":"M. Divya, Sekar Vijayakumar, Jingdi Chen","doi":"10.3390/jcs8010006","DOIUrl":null,"url":null,"abstract":"Joint damage is a major symptom of osteoarthritis, a degenerative disease that worsens over time. The purpose of this review was to assess the effectiveness and safety of nanomaterials as an alternative to the widely used methods. Due to its poor regenerative and self-healing properties, cartilage repair after lesions or debilitating disease is a major clinical issue. Here, we use the organometallic chemistry identity of chondroitin sulphate to repair cartilage lesions by creating a nano-elemental particle through electrostatic interactions. As an integral part of the extracellular matrix, chondroitin sulphate (CS) is shown to improve osteogenesis in this review. The injectability of hydrated cement products was greatly improved by the addition of CS, but there was no discernible change in their phase, morphology, apparent porosity, or compressive strength. This review article provides a thorough analysis of the results from the use of nanocomposites in orthopaedic drug delivery and bone remodelling engineering.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"68 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Short Review on Chondroitin Sulphate and Its Based Nanomaterials for Bone Repair and Bone Remodelling Applications\",\"authors\":\"M. Divya, Sekar Vijayakumar, Jingdi Chen\",\"doi\":\"10.3390/jcs8010006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint damage is a major symptom of osteoarthritis, a degenerative disease that worsens over time. The purpose of this review was to assess the effectiveness and safety of nanomaterials as an alternative to the widely used methods. Due to its poor regenerative and self-healing properties, cartilage repair after lesions or debilitating disease is a major clinical issue. Here, we use the organometallic chemistry identity of chondroitin sulphate to repair cartilage lesions by creating a nano-elemental particle through electrostatic interactions. As an integral part of the extracellular matrix, chondroitin sulphate (CS) is shown to improve osteogenesis in this review. The injectability of hydrated cement products was greatly improved by the addition of CS, but there was no discernible change in their phase, morphology, apparent porosity, or compressive strength. This review article provides a thorough analysis of the results from the use of nanocomposites in orthopaedic drug delivery and bone remodelling engineering.\",\"PeriodicalId\":15435,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"68 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8010006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
A Short Review on Chondroitin Sulphate and Its Based Nanomaterials for Bone Repair and Bone Remodelling Applications
Joint damage is a major symptom of osteoarthritis, a degenerative disease that worsens over time. The purpose of this review was to assess the effectiveness and safety of nanomaterials as an alternative to the widely used methods. Due to its poor regenerative and self-healing properties, cartilage repair after lesions or debilitating disease is a major clinical issue. Here, we use the organometallic chemistry identity of chondroitin sulphate to repair cartilage lesions by creating a nano-elemental particle through electrostatic interactions. As an integral part of the extracellular matrix, chondroitin sulphate (CS) is shown to improve osteogenesis in this review. The injectability of hydrated cement products was greatly improved by the addition of CS, but there was no discernible change in their phase, morphology, apparent porosity, or compressive strength. This review article provides a thorough analysis of the results from the use of nanocomposites in orthopaedic drug delivery and bone remodelling engineering.