Mark O. Paskhin, K. O. Aiyyzhy, Roman V. Pobedonostsev, Dina V. Kazantseva, I. Rakov, Ekaterina V. Barmina, D. Yanykin, S. Gudkov
{"title":"用于温室农业的红宝石纳米颗粒:合成、特点和应用","authors":"Mark O. Paskhin, K. O. Aiyyzhy, Roman V. Pobedonostsev, Dina V. Kazantseva, I. Rakov, Ekaterina V. Barmina, D. Yanykin, S. Gudkov","doi":"10.3390/jcs8010007","DOIUrl":null,"url":null,"abstract":"In this work, we investigated the effect of photoconversion covers based on ruby (chromium-doped alumina (Al2O3:Cr3+)) particles (PCC-R) on the growth and development of lettuce (Lactuca sativa) plants. Ruby particles (from 100 nm to 2 μm) were obtained by the sequential application of spall laser ablation and further laser fragmentation. The content of chromium ions relative to aluminum ions in the nanoparticles was 3.3 × 10−3. The covers with different densities of applied ruby particles (2 × 107 m−2 (PCC-R7), 2 × 108 m−2 (PCC-R8), 2 × 109 m−2 (PCC-R9)) were studied in the present work. The PCC-Rs had two wide bands of luminescence excitation. The first one was from 350 nm to 450 nm with a maximum at 405 nm, and the second one was from 500 nm to 600 nm with a peak at 550 nm. Synthesized covers emitted in the range of 650 nm to 750 nm, with a peak at 695 nm. It has been shown that PCC-R8, in contrast to PCC-R7 and PCC-R9, provided an increase in yield by 40% and was characterized by increased water use efficiency during dark respiration and assimilation of carbon dioxide in plants. It is assumed that the observed positive effect of PCC-R8 photoconversion covers is associated with the activation of regulatory mechanisms due to a qualitative change in the light spectrum.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"10 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ruby Nanoparticles for Greenhouse Farming: Synthesis, Features and Application\",\"authors\":\"Mark O. Paskhin, K. O. Aiyyzhy, Roman V. Pobedonostsev, Dina V. Kazantseva, I. Rakov, Ekaterina V. Barmina, D. Yanykin, S. Gudkov\",\"doi\":\"10.3390/jcs8010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigated the effect of photoconversion covers based on ruby (chromium-doped alumina (Al2O3:Cr3+)) particles (PCC-R) on the growth and development of lettuce (Lactuca sativa) plants. Ruby particles (from 100 nm to 2 μm) were obtained by the sequential application of spall laser ablation and further laser fragmentation. The content of chromium ions relative to aluminum ions in the nanoparticles was 3.3 × 10−3. The covers with different densities of applied ruby particles (2 × 107 m−2 (PCC-R7), 2 × 108 m−2 (PCC-R8), 2 × 109 m−2 (PCC-R9)) were studied in the present work. The PCC-Rs had two wide bands of luminescence excitation. The first one was from 350 nm to 450 nm with a maximum at 405 nm, and the second one was from 500 nm to 600 nm with a peak at 550 nm. Synthesized covers emitted in the range of 650 nm to 750 nm, with a peak at 695 nm. It has been shown that PCC-R8, in contrast to PCC-R7 and PCC-R9, provided an increase in yield by 40% and was characterized by increased water use efficiency during dark respiration and assimilation of carbon dioxide in plants. It is assumed that the observed positive effect of PCC-R8 photoconversion covers is associated with the activation of regulatory mechanisms due to a qualitative change in the light spectrum.\",\"PeriodicalId\":15435,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Ruby Nanoparticles for Greenhouse Farming: Synthesis, Features and Application
In this work, we investigated the effect of photoconversion covers based on ruby (chromium-doped alumina (Al2O3:Cr3+)) particles (PCC-R) on the growth and development of lettuce (Lactuca sativa) plants. Ruby particles (from 100 nm to 2 μm) were obtained by the sequential application of spall laser ablation and further laser fragmentation. The content of chromium ions relative to aluminum ions in the nanoparticles was 3.3 × 10−3. The covers with different densities of applied ruby particles (2 × 107 m−2 (PCC-R7), 2 × 108 m−2 (PCC-R8), 2 × 109 m−2 (PCC-R9)) were studied in the present work. The PCC-Rs had two wide bands of luminescence excitation. The first one was from 350 nm to 450 nm with a maximum at 405 nm, and the second one was from 500 nm to 600 nm with a peak at 550 nm. Synthesized covers emitted in the range of 650 nm to 750 nm, with a peak at 695 nm. It has been shown that PCC-R8, in contrast to PCC-R7 and PCC-R9, provided an increase in yield by 40% and was characterized by increased water use efficiency during dark respiration and assimilation of carbon dioxide in plants. It is assumed that the observed positive effect of PCC-R8 photoconversion covers is associated with the activation of regulatory mechanisms due to a qualitative change in the light spectrum.