Tomoki Miyashita, K. Katabira, H. Kurita, Fumio Narita
{"title":"测量磁致伸缩纤维嵌入玻璃纤维增强聚合物复合材料 I 型层间断裂中的磁通密度变化","authors":"Tomoki Miyashita, K. Katabira, H. Kurita, Fumio Narita","doi":"10.3390/jcs8010008","DOIUrl":null,"url":null,"abstract":"As sensor materials for structural health monitoring (SHM, a nondestructive test for the continuous evaluation of the conditions of individual structural components and entire assemblies), magnetostrictive materials, piezoelectric materials, and optical fibers have attracted significant interest. In this study, the mode I interlaminar fracture load and crack self-detection potential of glass fiber-reinforced polymer (GFRP)–embedded magnetostrictive Fe–Co fibers were investigated via double cantilever beam testing. The results indicated that by controlling the amount of Fe–Co fibers introduced into GFRP, the number of Fe–Co fibers could be reduced without compromising the performance of GFRP. Furthermore, the magnetic flux density increased significantly with crack propagation, indicating that the magnetic flux density change could determine crack propagation.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"23 67","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of Magnetic Flux Density Changes in Mode I Interlaminar Fracture in Magnetostrictive Fiber–Embedded Glass Fiber-Reinforced Polymer Composites\",\"authors\":\"Tomoki Miyashita, K. Katabira, H. Kurita, Fumio Narita\",\"doi\":\"10.3390/jcs8010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As sensor materials for structural health monitoring (SHM, a nondestructive test for the continuous evaluation of the conditions of individual structural components and entire assemblies), magnetostrictive materials, piezoelectric materials, and optical fibers have attracted significant interest. In this study, the mode I interlaminar fracture load and crack self-detection potential of glass fiber-reinforced polymer (GFRP)–embedded magnetostrictive Fe–Co fibers were investigated via double cantilever beam testing. The results indicated that by controlling the amount of Fe–Co fibers introduced into GFRP, the number of Fe–Co fibers could be reduced without compromising the performance of GFRP. Furthermore, the magnetic flux density increased significantly with crack propagation, indicating that the magnetic flux density change could determine crack propagation.\",\"PeriodicalId\":15435,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"23 67\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8010008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Measurement of Magnetic Flux Density Changes in Mode I Interlaminar Fracture in Magnetostrictive Fiber–Embedded Glass Fiber-Reinforced Polymer Composites
As sensor materials for structural health monitoring (SHM, a nondestructive test for the continuous evaluation of the conditions of individual structural components and entire assemblies), magnetostrictive materials, piezoelectric materials, and optical fibers have attracted significant interest. In this study, the mode I interlaminar fracture load and crack self-detection potential of glass fiber-reinforced polymer (GFRP)–embedded magnetostrictive Fe–Co fibers were investigated via double cantilever beam testing. The results indicated that by controlling the amount of Fe–Co fibers introduced into GFRP, the number of Fe–Co fibers could be reduced without compromising the performance of GFRP. Furthermore, the magnetic flux density increased significantly with crack propagation, indicating that the magnetic flux density change could determine crack propagation.