{"title":"带有卡普托分数导数的分数阶罗斯勒混沌系统混沌动力学行为的高效数值模拟","authors":"Ji-Lei Wang, Yu-Lan Wang, Xiao-Yu Li","doi":"10.1177/14613484231224611","DOIUrl":null,"url":null,"abstract":"This paper introduces a numerical approach for the fractional-order Rössler chaotic systems and gives error analysis. The effectiveness of the present method is determined by comparing the numerical results of the high-precision difference scheme and predictor-correctors scheme. Some complex dynamical behaviors for the fractional-order Rössler chaotic systems are shown.","PeriodicalId":504307,"journal":{"name":"Journal of Low Frequency Noise, Vibration and Active Control","volume":"120 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient numerical simulation of chaos dynamical behaviors for fractional-order Rössler chaotic systems with Caputo fractional derivative\",\"authors\":\"Ji-Lei Wang, Yu-Lan Wang, Xiao-Yu Li\",\"doi\":\"10.1177/14613484231224611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a numerical approach for the fractional-order Rössler chaotic systems and gives error analysis. The effectiveness of the present method is determined by comparing the numerical results of the high-precision difference scheme and predictor-correctors scheme. Some complex dynamical behaviors for the fractional-order Rössler chaotic systems are shown.\",\"PeriodicalId\":504307,\"journal\":{\"name\":\"Journal of Low Frequency Noise, Vibration and Active Control\",\"volume\":\"120 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Frequency Noise, Vibration and Active Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14613484231224611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise, Vibration and Active Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14613484231224611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient numerical simulation of chaos dynamical behaviors for fractional-order Rössler chaotic systems with Caputo fractional derivative
This paper introduces a numerical approach for the fractional-order Rössler chaotic systems and gives error analysis. The effectiveness of the present method is determined by comparing the numerical results of the high-precision difference scheme and predictor-correctors scheme. Some complex dynamical behaviors for the fractional-order Rössler chaotic systems are shown.