{"title":"从已知的三维空间初始函数渐近线构建热传导方程解的渐近线","authors":"S. V. Zakharov","doi":"10.4213/sm9890","DOIUrl":null,"url":null,"abstract":"Для уравнения теплопроводности в трехмерном пространстве получено асимптотическое приближение решения задачи Коши при неограниченном возрастании времени. Предполагается, что локально интегрируемая начальная функция, вообще говоря, не стремящаяся к нулю на бесконечности, имеет степенную асимптотику. Центральную роль в исследовании играет метод введения вспомогательного параметра, включающий регуляризацию особенностей в интегралах. Доказано, что асимптотика решения имеет вид ряда по отрицательным полуцелым степеням переменной времени с коэффициентами, зависящими от автомодельных переменных и логарифма времени, а главное приближение найдено в явном виде. На примере задачи Коши для векторного уравнения Бюргерса показано, что асимптотический анализ решения методом согласования приводит к необходимости построения асимптотического приближения решения уравнения теплопроводности. Библиография: 31 название.","PeriodicalId":273677,"journal":{"name":"Математический сборник","volume":"48 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Построение асимптотики решения уравнения теплопроводности по известной асимптотике начальной функции в трехмерном пространстве\",\"authors\":\"S. V. Zakharov\",\"doi\":\"10.4213/sm9890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Для уравнения теплопроводности в трехмерном пространстве получено асимптотическое приближение решения задачи Коши при неограниченном возрастании времени. Предполагается, что локально интегрируемая начальная функция, вообще говоря, не стремящаяся к нулю на бесконечности, имеет степенную асимптотику. Центральную роль в исследовании играет метод введения вспомогательного параметра, включающий регуляризацию особенностей в интегралах. Доказано, что асимптотика решения имеет вид ряда по отрицательным полуцелым степеням переменной времени с коэффициентами, зависящими от автомодельных переменных и логарифма времени, а главное приближение найдено в явном виде. На примере задачи Коши для векторного уравнения Бюргерса показано, что асимптотический анализ решения методом согласования приводит к необходимости построения асимптотического приближения решения уравнения теплопроводности. Библиография: 31 название.\",\"PeriodicalId\":273677,\"journal\":{\"name\":\"Математический сборник\",\"volume\":\"48 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Математический сборник\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Математический сборник","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/sm9890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Построение асимптотики решения уравнения теплопроводности по известной асимптотике начальной функции в трехмерном пространстве
Для уравнения теплопроводности в трехмерном пространстве получено асимптотическое приближение решения задачи Коши при неограниченном возрастании времени. Предполагается, что локально интегрируемая начальная функция, вообще говоря, не стремящаяся к нулю на бесконечности, имеет степенную асимптотику. Центральную роль в исследовании играет метод введения вспомогательного параметра, включающий регуляризацию особенностей в интегралах. Доказано, что асимптотика решения имеет вид ряда по отрицательным полуцелым степеням переменной времени с коэффициентами, зависящими от автомодельных переменных и логарифма времени, а главное приближение найдено в явном виде. На примере задачи Коши для векторного уравнения Бюргерса показано, что асимптотический анализ решения методом согласования приводит к необходимости построения асимптотического приближения решения уравнения теплопроводности. Библиография: 31 название.