心力衰竭中的长非编码 RNA(lncRNA):全面综述

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shambhavi Jha, Vasanth Kanth Thasma Loganathbabu, Kasinathan Kumaran, Gopinath Krishnasamy, Kandasamy Nagarajan Aruljothi
{"title":"心力衰竭中的长非编码 RNA(lncRNA):全面综述","authors":"Shambhavi Jha, Vasanth Kanth Thasma Loganathbabu, Kasinathan Kumaran, Gopinath Krishnasamy, Kandasamy Nagarajan Aruljothi","doi":"10.3390/ncrna10010003","DOIUrl":null,"url":null,"abstract":"Heart failure (HF) is a widespread cardiovascular condition that poses significant risks to a wide spectrum of age groups and leads to terminal illness. Although our understanding of the underlying mechanisms of HF has improved, the available treatments still remain inadequate. Recently, long non-coding RNAs (lncRNAs) have emerged as crucial players in cardiac function, showing possibilities as potential targets for HF therapy. These versatile molecules interact with chromatin, proteins, RNA, and DNA, influencing gene regulation. Notable lncRNAs like Fendrr, Trpm3, and Scarb2 have demonstrated therapeutic potential in HF cases. Additionally, utilizing lncRNAs to forecast survival rates in HF patients and distinguish various cardiac remodeling conditions holds great promise, offering significant benefits in managing cardiovascular disease and addressing its far-reaching societal and economic impacts. This underscores the pivotal role of lncRNAs in the context of HF research and treatment.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"26 34","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long Non-Coding RNAs (lncRNAs) in Heart Failure: A Comprehensive Review\",\"authors\":\"Shambhavi Jha, Vasanth Kanth Thasma Loganathbabu, Kasinathan Kumaran, Gopinath Krishnasamy, Kandasamy Nagarajan Aruljothi\",\"doi\":\"10.3390/ncrna10010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart failure (HF) is a widespread cardiovascular condition that poses significant risks to a wide spectrum of age groups and leads to terminal illness. Although our understanding of the underlying mechanisms of HF has improved, the available treatments still remain inadequate. Recently, long non-coding RNAs (lncRNAs) have emerged as crucial players in cardiac function, showing possibilities as potential targets for HF therapy. These versatile molecules interact with chromatin, proteins, RNA, and DNA, influencing gene regulation. Notable lncRNAs like Fendrr, Trpm3, and Scarb2 have demonstrated therapeutic potential in HF cases. Additionally, utilizing lncRNAs to forecast survival rates in HF patients and distinguish various cardiac remodeling conditions holds great promise, offering significant benefits in managing cardiovascular disease and addressing its far-reaching societal and economic impacts. This underscores the pivotal role of lncRNAs in the context of HF research and treatment.\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"26 34\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna10010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna10010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心力衰竭(HF)是一种广泛存在的心血管疾病,对不同年龄段的人群都有很大风险,并会导致终末期疾病。尽管我们对心力衰竭内在机制的认识有所提高,但现有的治疗方法仍然不足。最近,长非编码 RNAs(lncRNAs)作为心脏功能的重要参与者出现,显示出作为高血压治疗潜在靶点的可能性。这些多功能分子与染色质、蛋白质、RNA 和 DNA 相互作用,影响基因调控。Fendrr、Trpm3 和 Scarb2 等著名的 lncRNA 已在高频病例中显示出治疗潜力。此外,利用 lncRNA 预测心房颤动患者的存活率并区分各种心脏重塑情况也大有可为,这将为管理心血管疾病和解决其对社会和经济的深远影响带来巨大好处。这凸显了 lncRNA 在高频研究和治疗中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long Non-Coding RNAs (lncRNAs) in Heart Failure: A Comprehensive Review
Heart failure (HF) is a widespread cardiovascular condition that poses significant risks to a wide spectrum of age groups and leads to terminal illness. Although our understanding of the underlying mechanisms of HF has improved, the available treatments still remain inadequate. Recently, long non-coding RNAs (lncRNAs) have emerged as crucial players in cardiac function, showing possibilities as potential targets for HF therapy. These versatile molecules interact with chromatin, proteins, RNA, and DNA, influencing gene regulation. Notable lncRNAs like Fendrr, Trpm3, and Scarb2 have demonstrated therapeutic potential in HF cases. Additionally, utilizing lncRNAs to forecast survival rates in HF patients and distinguish various cardiac remodeling conditions holds great promise, offering significant benefits in managing cardiovascular disease and addressing its far-reaching societal and economic impacts. This underscores the pivotal role of lncRNAs in the context of HF research and treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信