用于求解非线性方程的梯形牛顿法变体及其动力学特性

S. Putra, M. Imran, Ayunda Putri, Rike Marjulisa
{"title":"用于求解非线性方程的梯形牛顿法变体及其动力学特性","authors":"S. Putra, M. Imran, Ayunda Putri, Rike Marjulisa","doi":"10.46336/ijqrm.v4i4.539","DOIUrl":null,"url":null,"abstract":"This article introduces a novel approach resulting from the adaptation of Trapezoidal-Newton method variants. The iterative process is enhanced through the incorporation of a numerical integral strategy derived from two-partition Trapezoidal method. Through rigorous error analysis, the study establishes a third order convergence for this method. It emerges as a viable alternative for solving nonlinear equations, a conclusion substantiated by computational costs conducted on diverse nonlinear equation forms. Furthermore, an exploration of basin of attraction analyses that this method exhibits faster convergence compared to other Newton-type methods, albeit with a slightly expanded divergent region with a variant of Newton Simpson’s method.","PeriodicalId":14309,"journal":{"name":"International Journal of Quantitative Research and Modeling","volume":"180 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variant of Trapezoidal-Newton Method for Solving Nonlinear Equations and its Dynamics\",\"authors\":\"S. Putra, M. Imran, Ayunda Putri, Rike Marjulisa\",\"doi\":\"10.46336/ijqrm.v4i4.539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a novel approach resulting from the adaptation of Trapezoidal-Newton method variants. The iterative process is enhanced through the incorporation of a numerical integral strategy derived from two-partition Trapezoidal method. Through rigorous error analysis, the study establishes a third order convergence for this method. It emerges as a viable alternative for solving nonlinear equations, a conclusion substantiated by computational costs conducted on diverse nonlinear equation forms. Furthermore, an exploration of basin of attraction analyses that this method exhibits faster convergence compared to other Newton-type methods, albeit with a slightly expanded divergent region with a variant of Newton Simpson’s method.\",\"PeriodicalId\":14309,\"journal\":{\"name\":\"International Journal of Quantitative Research and Modeling\",\"volume\":\"180 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantitative Research and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46336/ijqrm.v4i4.539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantitative Research and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46336/ijqrm.v4i4.539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了对梯形牛顿法变体进行调整后产生的一种新方法。通过结合从两分区梯形法衍生出的数值积分策略,迭代过程得到了增强。通过严格的误差分析,研究确定了该方法的三阶收敛性。该方法是求解非线性方程的可行替代方法,对各种非线性方程形式进行的计算成本证实了这一结论。此外,对吸引盆地的探索分析表明,与其他牛顿型方法相比,该方法的收敛速度更快,尽管牛顿-辛普森方法的变体发散区域略有扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variant of Trapezoidal-Newton Method for Solving Nonlinear Equations and its Dynamics
This article introduces a novel approach resulting from the adaptation of Trapezoidal-Newton method variants. The iterative process is enhanced through the incorporation of a numerical integral strategy derived from two-partition Trapezoidal method. Through rigorous error analysis, the study establishes a third order convergence for this method. It emerges as a viable alternative for solving nonlinear equations, a conclusion substantiated by computational costs conducted on diverse nonlinear equation forms. Furthermore, an exploration of basin of attraction analyses that this method exhibits faster convergence compared to other Newton-type methods, albeit with a slightly expanded divergent region with a variant of Newton Simpson’s method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信