从 M3(C)到 M2(M2(C))的正映射的可分解性

Winda C. Akatch, Okelo B. Nyaare, Omoke P. M.
{"title":"从 M3(C)到 M2(M2(C))的正映射的可分解性","authors":"Winda C. Akatch, Okelo B. Nyaare, Omoke P. M.","doi":"10.48185/jmam.v4i2.826","DOIUrl":null,"url":null,"abstract":"In most literature, the decomposition of positive maps from M3 to M2 are discussed where the matrix elements are complex numbers. In this paper we construct a positive maps φ(µ,c1,c2) from M3(C) to M2(M2(C)). The Choi matrices for complete positivity and complete copositivity ares visualized as tensor matrix M3 ⊗M2 with M2(C) as the entry elements. The construction allow us describe decomposability on positive semidefinite matrices.","PeriodicalId":393347,"journal":{"name":"Journal of Mathematical Analysis and Modeling","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposable of positive map from M3(C) to M2(M2(C))\",\"authors\":\"Winda C. Akatch, Okelo B. Nyaare, Omoke P. M.\",\"doi\":\"10.48185/jmam.v4i2.826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In most literature, the decomposition of positive maps from M3 to M2 are discussed where the matrix elements are complex numbers. In this paper we construct a positive maps φ(µ,c1,c2) from M3(C) to M2(M2(C)). The Choi matrices for complete positivity and complete copositivity ares visualized as tensor matrix M3 ⊗M2 with M2(C) as the entry elements. The construction allow us describe decomposability on positive semidefinite matrices.\",\"PeriodicalId\":393347,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Modeling\",\"volume\":\" 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48185/jmam.v4i2.826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48185/jmam.v4i2.826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大多数文献中,讨论的是从 M3 到 M2 的正映射分解时,矩阵元素都是复数。本文构建了从 M3(C) 到 M2(M2(C)) 的正映射 φ(µ,c1,c2)。完全实在性和完全共实在性的 Choi 矩阵可视化为以 M2(C) 为入口元素的张量矩阵 M3 ⊗M2。通过这一构造,我们可以描述正半有限矩阵的可分解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposable of positive map from M3(C) to M2(M2(C))
In most literature, the decomposition of positive maps from M3 to M2 are discussed where the matrix elements are complex numbers. In this paper we construct a positive maps φ(µ,c1,c2) from M3(C) to M2(M2(C)). The Choi matrices for complete positivity and complete copositivity ares visualized as tensor matrix M3 ⊗M2 with M2(C) as the entry elements. The construction allow us describe decomposability on positive semidefinite matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信