基于改进遗传算法的考虑不可行路线的车辆选线问题研究

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
Xiao-Yun Jiang, Wen-Chao Chen, Yu-Tong Liu
{"title":"基于改进遗传算法的考虑不可行路线的车辆选线问题研究","authors":"Xiao-Yun Jiang, Wen-Chao Chen, Yu-Tong Liu","doi":"10.46604/ijeti.2023.12612","DOIUrl":null,"url":null,"abstract":"The study aims to optimize the vehicle routing problem, considering infeasible routing, to minimize losses for the company. Firstly, a vehicle routing model with hard time windows and infeasible route constraints is established, considering both the minimization of total vehicle travel distance and the maximization of customer satisfaction. Subsequently, a Floyd-based improved genetic algorithm that incorporates local search is designed. Finally, the computational experiment demonstrates that compared with the classic genetic algorithm, the improved genetic algorithm reduced the average travel distance by 20.6% when focusing on travel distance and 18.4% when prioritizing customer satisfaction. In both scenarios, there was also a reduction of one in the average number of vehicles used. The proposed method effectively addresses the model introduced in this study, resulting in a reduction in total distance and an enhancement of customer satisfaction.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm\",\"authors\":\"Xiao-Yun Jiang, Wen-Chao Chen, Yu-Tong Liu\",\"doi\":\"10.46604/ijeti.2023.12612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aims to optimize the vehicle routing problem, considering infeasible routing, to minimize losses for the company. Firstly, a vehicle routing model with hard time windows and infeasible route constraints is established, considering both the minimization of total vehicle travel distance and the maximization of customer satisfaction. Subsequently, a Floyd-based improved genetic algorithm that incorporates local search is designed. Finally, the computational experiment demonstrates that compared with the classic genetic algorithm, the improved genetic algorithm reduced the average travel distance by 20.6% when focusing on travel distance and 18.4% when prioritizing customer satisfaction. In both scenarios, there was also a reduction of one in the average number of vehicles used. The proposed method effectively addresses the model introduced in this study, resulting in a reduction in total distance and an enhancement of customer satisfaction.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2023.12612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.12612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在优化车辆路线问题,同时考虑不可行路线,以尽量减少公司损失。首先,考虑到车辆总行程距离最小化和客户满意度最大化,建立了一个具有硬时间窗和不可行路线约束的车辆路线模型。随后,设计了一种基于 Floyd 的改进遗传算法,该算法结合了局部搜索。最后,计算实验表明,与经典遗传算法相比,改进遗传算法在以行驶距离为重点时,平均行驶距离减少了 20.6%,在以客户满意度为优先时,平均行驶距离减少了 18.4%。在这两种情况下,平均用车数量也减少了 1 辆。所提出的方法有效地解决了本研究中提出的模型问题,从而减少了总路程,提高了客户满意度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm
The study aims to optimize the vehicle routing problem, considering infeasible routing, to minimize losses for the company. Firstly, a vehicle routing model with hard time windows and infeasible route constraints is established, considering both the minimization of total vehicle travel distance and the maximization of customer satisfaction. Subsequently, a Floyd-based improved genetic algorithm that incorporates local search is designed. Finally, the computational experiment demonstrates that compared with the classic genetic algorithm, the improved genetic algorithm reduced the average travel distance by 20.6% when focusing on travel distance and 18.4% when prioritizing customer satisfaction. In both scenarios, there was also a reduction of one in the average number of vehicles used. The proposed method effectively addresses the model introduced in this study, resulting in a reduction in total distance and an enhancement of customer satisfaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信