Ahmad M. Alghamdi, A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Nouf A. Bamatraf, A. Fakeeha, Ahmed I. Osman, S. Alreshaidan, Farid Fadhillah, S. Al‐Zahrani, Ahmed S. Al-Fatesh
{"title":"定制 Ni-MgO 催化剂:揭示 CH4-CO2 重整过程中温度驱动的协同作用","authors":"Ahmad M. Alghamdi, A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Nouf A. Bamatraf, A. Fakeeha, Ahmed I. Osman, S. Alreshaidan, Farid Fadhillah, S. Al‐Zahrani, Ahmed S. Al-Fatesh","doi":"10.3390/catal14010033","DOIUrl":null,"url":null,"abstract":"This study examines nickel catalysts on two different supports—magnesium oxide (MgO) and modified MgO (with 10 wt.% MOx; M = Ti, Zr, Al)—for their effectiveness in the dry reforming of methane. The reactions were conducted at 700 °C in a tubular microreactor. The study compares the best-performing catalyst with a reference catalyst (5Ni/MgO) by conducting dry reforming of methane at different reaction temperatures. The catalysts are evaluated using surface area, porosity, X-ray diffraction, infrared spectroscopy, transmission electron microscope, thermogravimeter, and temperature-programmed techniques. The 5Ni/MgO + ZrO2 catalyst demonstrates inferior catalytic activity due to insufficient active sites. On the other hand, the 5Ni/MgO + TiO2 catalyst shows limited catalytic excellence due to excessive coke deposits, which are six times higher than other catalysts. The 5Ni/MgO and 5Ni/MgO + Al2O3 catalysts have the richest basic and acidic profiles, respectively. The 5Ni/MgO + Al2O3 catalyst is superior to other catalysts due to its stronger metal–support interaction on the expanded surface and the efficient diffusion of carbon on its less crystalline surface. At 700 °C, this catalyst achieves 73% CH4 conversion, and at 800 °C, it reaches 83% conversion. This study emphasizes the crucial role of the reaction temperature in reducing carbon deposition and enhancing the efficiency of the reforming process.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":" 24","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored Ni-MgO Catalysts: Unveiling Temperature-Driven Synergy in CH4-CO2 Reforming\",\"authors\":\"Ahmad M. Alghamdi, A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Nouf A. Bamatraf, A. Fakeeha, Ahmed I. Osman, S. Alreshaidan, Farid Fadhillah, S. Al‐Zahrani, Ahmed S. Al-Fatesh\",\"doi\":\"10.3390/catal14010033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines nickel catalysts on two different supports—magnesium oxide (MgO) and modified MgO (with 10 wt.% MOx; M = Ti, Zr, Al)—for their effectiveness in the dry reforming of methane. The reactions were conducted at 700 °C in a tubular microreactor. The study compares the best-performing catalyst with a reference catalyst (5Ni/MgO) by conducting dry reforming of methane at different reaction temperatures. The catalysts are evaluated using surface area, porosity, X-ray diffraction, infrared spectroscopy, transmission electron microscope, thermogravimeter, and temperature-programmed techniques. The 5Ni/MgO + ZrO2 catalyst demonstrates inferior catalytic activity due to insufficient active sites. On the other hand, the 5Ni/MgO + TiO2 catalyst shows limited catalytic excellence due to excessive coke deposits, which are six times higher than other catalysts. The 5Ni/MgO and 5Ni/MgO + Al2O3 catalysts have the richest basic and acidic profiles, respectively. The 5Ni/MgO + Al2O3 catalyst is superior to other catalysts due to its stronger metal–support interaction on the expanded surface and the efficient diffusion of carbon on its less crystalline surface. At 700 °C, this catalyst achieves 73% CH4 conversion, and at 800 °C, it reaches 83% conversion. This study emphasizes the crucial role of the reaction temperature in reducing carbon deposition and enhancing the efficiency of the reforming process.\",\"PeriodicalId\":9794,\"journal\":{\"name\":\"Catalysts\",\"volume\":\" 24\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14010033\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14010033","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tailored Ni-MgO Catalysts: Unveiling Temperature-Driven Synergy in CH4-CO2 Reforming
This study examines nickel catalysts on two different supports—magnesium oxide (MgO) and modified MgO (with 10 wt.% MOx; M = Ti, Zr, Al)—for their effectiveness in the dry reforming of methane. The reactions were conducted at 700 °C in a tubular microreactor. The study compares the best-performing catalyst with a reference catalyst (5Ni/MgO) by conducting dry reforming of methane at different reaction temperatures. The catalysts are evaluated using surface area, porosity, X-ray diffraction, infrared spectroscopy, transmission electron microscope, thermogravimeter, and temperature-programmed techniques. The 5Ni/MgO + ZrO2 catalyst demonstrates inferior catalytic activity due to insufficient active sites. On the other hand, the 5Ni/MgO + TiO2 catalyst shows limited catalytic excellence due to excessive coke deposits, which are six times higher than other catalysts. The 5Ni/MgO and 5Ni/MgO + Al2O3 catalysts have the richest basic and acidic profiles, respectively. The 5Ni/MgO + Al2O3 catalyst is superior to other catalysts due to its stronger metal–support interaction on the expanded surface and the efficient diffusion of carbon on its less crystalline surface. At 700 °C, this catalyst achieves 73% CH4 conversion, and at 800 °C, it reaches 83% conversion. This study emphasizes the crucial role of the reaction temperature in reducing carbon deposition and enhancing the efficiency of the reforming process.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.