Cinthya Alvarado, Daniel Martínez-Cerna, Hernán Alvarado-Quintana
{"title":"用于天花板隔热的高岭土、硅藻土和稻壳灰土工聚合物","authors":"Cinthya Alvarado, Daniel Martínez-Cerna, Hernán Alvarado-Quintana","doi":"10.3390/buildings14010112","DOIUrl":null,"url":null,"abstract":"In this study, geopolymers made of metakaolin (MK), diatomite (D), and rice husk ash (RHA) were developed for ceiling thermal insulation in houses to provide protection against cold temperatures. The influence of the constituent mixing ratio and the temperature of curing on the heat conductivity and compressive strength of the geopolymer was investigated. Specimens were formed according to a 10-level mix design with three replicates and subjected to curing at 40 °C and 80 °C. Heat conductivity and compressive strength were determined in accordance with established standards. The simplex lattice method was used to obtain the response surfaces, contour plots, and tracking curves. The geopolymers under study displayed a reduction in heat conductivity and an increase in compressive strength when the curing temperature was raised. The optimal mixing ratio to achieve a balance between the compressive strength and thermal conductivity of the geopolymers investigated was 0.50 MK and 0.50 RHA. Diatomite’s thermal insulation contribution is neutralized when crystals from the geopolymer gel fill the pore volume. The mixture’s optimal results were achieved when cured at 80 °C, demonstrating a thermal conductivity of 0.10 W/m·K and a compressive strength of 5.37 MPa.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"109 44","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geopolymer Made from Kaolin, Diatomite, and Rice Husk Ash for Ceiling Thermal Insulation\",\"authors\":\"Cinthya Alvarado, Daniel Martínez-Cerna, Hernán Alvarado-Quintana\",\"doi\":\"10.3390/buildings14010112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, geopolymers made of metakaolin (MK), diatomite (D), and rice husk ash (RHA) were developed for ceiling thermal insulation in houses to provide protection against cold temperatures. The influence of the constituent mixing ratio and the temperature of curing on the heat conductivity and compressive strength of the geopolymer was investigated. Specimens were formed according to a 10-level mix design with three replicates and subjected to curing at 40 °C and 80 °C. Heat conductivity and compressive strength were determined in accordance with established standards. The simplex lattice method was used to obtain the response surfaces, contour plots, and tracking curves. The geopolymers under study displayed a reduction in heat conductivity and an increase in compressive strength when the curing temperature was raised. The optimal mixing ratio to achieve a balance between the compressive strength and thermal conductivity of the geopolymers investigated was 0.50 MK and 0.50 RHA. Diatomite’s thermal insulation contribution is neutralized when crystals from the geopolymer gel fill the pore volume. The mixture’s optimal results were achieved when cured at 80 °C, demonstrating a thermal conductivity of 0.10 W/m·K and a compressive strength of 5.37 MPa.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"109 44\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010112\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010112","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究开发了由偏高岭土(MK)、硅藻土(D)和稻壳灰(RHA)制成的土工聚合物,用于房屋天花板隔热,以抵御低温。研究了成分混合比例和固化温度对土工聚合物导热性和抗压强度的影响。试样按照 10 级混合设计制成,有三次重复,分别在 40 °C 和 80 °C 下固化。导热系数和抗压强度按照既定标准测定。采用简单网格法获得响应面、等值线图和跟踪曲线。当固化温度升高时,所研究的土工聚合物的导热系数降低,抗压强度升高。要在所研究的土工聚合物的抗压强度和导热系数之间取得平衡,最佳混合比例为 0.50 MK 和 0.50 RHA。当土工聚合物凝胶的晶体充满孔隙时,硅藻土的隔热作用就会被中和。混合物在 80 °C 固化时达到最佳效果,导热系数为 0.10 W/m-K,抗压强度为 5.37 MPa。
Geopolymer Made from Kaolin, Diatomite, and Rice Husk Ash for Ceiling Thermal Insulation
In this study, geopolymers made of metakaolin (MK), diatomite (D), and rice husk ash (RHA) were developed for ceiling thermal insulation in houses to provide protection against cold temperatures. The influence of the constituent mixing ratio and the temperature of curing on the heat conductivity and compressive strength of the geopolymer was investigated. Specimens were formed according to a 10-level mix design with three replicates and subjected to curing at 40 °C and 80 °C. Heat conductivity and compressive strength were determined in accordance with established standards. The simplex lattice method was used to obtain the response surfaces, contour plots, and tracking curves. The geopolymers under study displayed a reduction in heat conductivity and an increase in compressive strength when the curing temperature was raised. The optimal mixing ratio to achieve a balance between the compressive strength and thermal conductivity of the geopolymers investigated was 0.50 MK and 0.50 RHA. Diatomite’s thermal insulation contribution is neutralized when crystals from the geopolymer gel fill the pore volume. The mixture’s optimal results were achieved when cured at 80 °C, demonstrating a thermal conductivity of 0.10 W/m·K and a compressive strength of 5.37 MPa.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates