{"title":"设计初期天窗设计的敏感性分析和多目标优化","authors":"Yuan Fang, Soolyeon Cho, Yanyu Wang, Luya He","doi":"10.3390/en17010219","DOIUrl":null,"url":null,"abstract":"Building geometry design decisions are important for energy efficiency and daylight performance. Sensitivity analysis, coupled with optimization, is an important approach to investigate and optimize building geometry in the early design stage. Incorporating skylights is an important daylighting strategy in commercial buildings; however, skylight-to-floor ratio (SFR) is often the only design variable evaluated in precedent studies. More design variables related to skylight geometry, clerestory geometry, skylight material, and building geometry need to be evaluated. This study investigates the skylight design of a 2000-square-meter commercial building. Eighteen design variables are evaluated according to their influence on building energy and daylight performance. One-at-a-time (OAT), linear regression, and Morris sensitivity analysis approaches are utilized to identify the most influential variables. Seven of the twelve building geometry variables and two of the six building material variables are considered as important. Then, a multi-objective optimization with genetic algorithms is processed to find out the optimal design solution. The three objectives are energy use intensity (EUI), daylight autonomy (DA), and daylight uniformity (DU). After the optimization, five candidate design options are picked from the Pareto front. Discussions are made on the features of these designs, and one design is selected as the optimal solution.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"113 46","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Analysis and Multi-Objective Optimization of Skylight Design in the Early Design Stage\",\"authors\":\"Yuan Fang, Soolyeon Cho, Yanyu Wang, Luya He\",\"doi\":\"10.3390/en17010219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building geometry design decisions are important for energy efficiency and daylight performance. Sensitivity analysis, coupled with optimization, is an important approach to investigate and optimize building geometry in the early design stage. Incorporating skylights is an important daylighting strategy in commercial buildings; however, skylight-to-floor ratio (SFR) is often the only design variable evaluated in precedent studies. More design variables related to skylight geometry, clerestory geometry, skylight material, and building geometry need to be evaluated. This study investigates the skylight design of a 2000-square-meter commercial building. Eighteen design variables are evaluated according to their influence on building energy and daylight performance. One-at-a-time (OAT), linear regression, and Morris sensitivity analysis approaches are utilized to identify the most influential variables. Seven of the twelve building geometry variables and two of the six building material variables are considered as important. Then, a multi-objective optimization with genetic algorithms is processed to find out the optimal design solution. The three objectives are energy use intensity (EUI), daylight autonomy (DA), and daylight uniformity (DU). After the optimization, five candidate design options are picked from the Pareto front. Discussions are made on the features of these designs, and one design is selected as the optimal solution.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":\"113 46\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17010219\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17010219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Sensitivity Analysis and Multi-Objective Optimization of Skylight Design in the Early Design Stage
Building geometry design decisions are important for energy efficiency and daylight performance. Sensitivity analysis, coupled with optimization, is an important approach to investigate and optimize building geometry in the early design stage. Incorporating skylights is an important daylighting strategy in commercial buildings; however, skylight-to-floor ratio (SFR) is often the only design variable evaluated in precedent studies. More design variables related to skylight geometry, clerestory geometry, skylight material, and building geometry need to be evaluated. This study investigates the skylight design of a 2000-square-meter commercial building. Eighteen design variables are evaluated according to their influence on building energy and daylight performance. One-at-a-time (OAT), linear regression, and Morris sensitivity analysis approaches are utilized to identify the most influential variables. Seven of the twelve building geometry variables and two of the six building material variables are considered as important. Then, a multi-objective optimization with genetic algorithms is processed to find out the optimal design solution. The three objectives are energy use intensity (EUI), daylight autonomy (DA), and daylight uniformity (DU). After the optimization, five candidate design options are picked from the Pareto front. Discussions are made on the features of these designs, and one design is selected as the optimal solution.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.