{"title":"无穷维同步系统中的收敛解和振荡解","authors":"Alexandr P. Elsakov, A. Proskurnikov, V. Smirnova","doi":"10.35470/2226-4116-2023-12-4-257-263","DOIUrl":null,"url":null,"abstract":"Control systems that arise in phase synchronization problems are featured by infinite sets of stable and unstable equilibria, caused by presence of periodic nonlinearities. For this reason, such systems are often called “pendulum-like”. Their dynamics are thus featured by multi-stability and cannot be examined by classical methods that have been developed to test the global stability of a unique equilibrium point. In general, only sufficient conditions for the solution convergence are known that are usually derived for pendulum-like systems of Lurie type, that is, interconnections of stable LTI blocks and periodic nonlinearities, which obey sector or slope restrictions. Most typically, these conditions are written as multi-parametric frequency-domain inequalities, which should be satisfied by the transfer function of the system’s linear part. Remarkably, if the frequency-domain inequalities hold outside some bounded range of frequencies, then the absence of periodic solutions with frequencies in this range is guaranteed, which can be considered as a weaker asymptotical property.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":"103 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergent and oscillatory solutions in infinite-dimensional synchronization systems\",\"authors\":\"Alexandr P. Elsakov, A. Proskurnikov, V. Smirnova\",\"doi\":\"10.35470/2226-4116-2023-12-4-257-263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control systems that arise in phase synchronization problems are featured by infinite sets of stable and unstable equilibria, caused by presence of periodic nonlinearities. For this reason, such systems are often called “pendulum-like”. Their dynamics are thus featured by multi-stability and cannot be examined by classical methods that have been developed to test the global stability of a unique equilibrium point. In general, only sufficient conditions for the solution convergence are known that are usually derived for pendulum-like systems of Lurie type, that is, interconnections of stable LTI blocks and periodic nonlinearities, which obey sector or slope restrictions. Most typically, these conditions are written as multi-parametric frequency-domain inequalities, which should be satisfied by the transfer function of the system’s linear part. Remarkably, if the frequency-domain inequalities hold outside some bounded range of frequencies, then the absence of periodic solutions with frequencies in this range is guaranteed, which can be considered as a weaker asymptotical property.\",\"PeriodicalId\":37674,\"journal\":{\"name\":\"Cybernetics and Physics\",\"volume\":\"103 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35470/2226-4116-2023-12-4-257-263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2023-12-4-257-263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Convergent and oscillatory solutions in infinite-dimensional synchronization systems
Control systems that arise in phase synchronization problems are featured by infinite sets of stable and unstable equilibria, caused by presence of periodic nonlinearities. For this reason, such systems are often called “pendulum-like”. Their dynamics are thus featured by multi-stability and cannot be examined by classical methods that have been developed to test the global stability of a unique equilibrium point. In general, only sufficient conditions for the solution convergence are known that are usually derived for pendulum-like systems of Lurie type, that is, interconnections of stable LTI blocks and periodic nonlinearities, which obey sector or slope restrictions. Most typically, these conditions are written as multi-parametric frequency-domain inequalities, which should be satisfied by the transfer function of the system’s linear part. Remarkably, if the frequency-domain inequalities hold outside some bounded range of frequencies, then the absence of periodic solutions with frequencies in this range is guaranteed, which can be considered as a weaker asymptotical property.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.