渗透保护剂甘氨酸甜菜碱在减轻植物重金属毒性方面的新作用:系统综述。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-06-01 Epub Date: 2024-01-06 DOI:10.1007/s42977-023-00198-9
Jyoti Sharma, Sandeep Kumar, Pooja Singh, Vikram Kumar, Shivani Verma, Pradeep Khyalia, Asha Sharma
{"title":"渗透保护剂甘氨酸甜菜碱在减轻植物重金属毒性方面的新作用:系统综述。","authors":"Jyoti Sharma, Sandeep Kumar, Pooja Singh, Vikram Kumar, Shivani Verma, Pradeep Khyalia, Asha Sharma","doi":"10.1007/s42977-023-00198-9","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metals (HMs) toxicity has become one of the major global issues and poses a serious threat to the environment in recent years. HM pollution in agricultural soil is caused by metal mining, smelting, volcanic activity, industrial discharges, and excessive use of phosphate fertilizers. HMs above a threshold level adversely affect the cellular metabolism of plants by producing reactive oxygen species (ROS), which attack cellular proteins. There are different mechanisms (physiological and morphological) adopted by plants to survive in the era of abiotic stress. Various osmoprotectants or compatible solutes, including amino acids, sugar, and betaines, enable the plants to counteract the HM stress. Glycine betaine (GB) is an effective osmolyte against HM stress among compatible solutes. GB has been shown to improve plant growth, photosynthesis, uptake of nutrients, and minimize oxidative stress in plants under HM stress. Additionally, GB increases the activity of antioxidant enzymes such as CAT (catalase), SOD (superoxide dismutase), and POD (peroxidase), which are effective in scavenging unwarranted ROS. Since not all species of plants can naturally produce or accumulate GB in response to stress, various approaches have been explored for introducing them. Plant hormones like salicylic acid, ABA (abscisic acid), and JA (jasmonic acid) co-ordinately stimulate the accumulation of GB inside the cell under HM stress. Apart from the exogenous application, the introduction of GB pathway genes in GB deficient species via genetic engineering also seems to be efficient in mediating HM stress. This review complied the beneficial effects of GB in mitigating HM stress and its role as a plant growth regulator. Additionally, the review explores the potential for engineering GB biosynthesis in plants as a strategy to bolster their resilience to HMs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging role of osmoprotectant glycine betaine to mitigate heavy metals toxicity in plants: a systematic review.\",\"authors\":\"Jyoti Sharma, Sandeep Kumar, Pooja Singh, Vikram Kumar, Shivani Verma, Pradeep Khyalia, Asha Sharma\",\"doi\":\"10.1007/s42977-023-00198-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metals (HMs) toxicity has become one of the major global issues and poses a serious threat to the environment in recent years. HM pollution in agricultural soil is caused by metal mining, smelting, volcanic activity, industrial discharges, and excessive use of phosphate fertilizers. HMs above a threshold level adversely affect the cellular metabolism of plants by producing reactive oxygen species (ROS), which attack cellular proteins. There are different mechanisms (physiological and morphological) adopted by plants to survive in the era of abiotic stress. Various osmoprotectants or compatible solutes, including amino acids, sugar, and betaines, enable the plants to counteract the HM stress. Glycine betaine (GB) is an effective osmolyte against HM stress among compatible solutes. GB has been shown to improve plant growth, photosynthesis, uptake of nutrients, and minimize oxidative stress in plants under HM stress. Additionally, GB increases the activity of antioxidant enzymes such as CAT (catalase), SOD (superoxide dismutase), and POD (peroxidase), which are effective in scavenging unwarranted ROS. Since not all species of plants can naturally produce or accumulate GB in response to stress, various approaches have been explored for introducing them. Plant hormones like salicylic acid, ABA (abscisic acid), and JA (jasmonic acid) co-ordinately stimulate the accumulation of GB inside the cell under HM stress. Apart from the exogenous application, the introduction of GB pathway genes in GB deficient species via genetic engineering also seems to be efficient in mediating HM stress. This review complied the beneficial effects of GB in mitigating HM stress and its role as a plant growth regulator. Additionally, the review explores the potential for engineering GB biosynthesis in plants as a strategy to bolster their resilience to HMs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42977-023-00198-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-023-00198-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,重金属(HMs)毒性已成为全球主要问题之一,并对环境构成严重威胁。农业土壤中的 HMs 污染是由金属开采、冶炼、火山活动、工业排放和过量使用磷肥造成的。超过阈值水平的 HMs 会产生活性氧(ROS),攻击细胞蛋白质,从而对植物的细胞代谢产生不利影响。在非生物胁迫时代,植物有不同的生存机制(生理和形态)。各种渗透保护剂或相容性溶质(包括氨基酸、糖和甜菜碱)可使植物抵御 HM 胁迫。甘氨酸甜菜碱(GB)是相容溶质中对抗 HM 胁迫的有效渗透保护剂。研究表明,GB 能改善植物的生长、光合作用、养分吸收,并最大程度地减少植物在 HM 胁迫下的氧化应激。此外,GB 还能提高 CAT(过氧化氢酶)、SOD(超氧化物歧化酶)和 POD(过氧化物酶)等抗氧化酶的活性,从而有效清除不必要的 ROS。由于并非所有种类的植物都能自然产生或积累 GB 以应对压力,因此人们探索了各种方法来引入 GB。水杨酸、ABA(脱落酸)和 JA(茉莉酸)等植物激素会在 HM 胁迫下协同刺激细胞内 GB 的积累。除了外源应用外,通过基因工程在缺乏 GB 的物种中引入 GB 通路基因似乎也能有效调解 HM 胁迫。本综述阐述了 GB 在缓解 HM 胁迫方面的有益作用及其作为植物生长调节剂的作用。此外,该综述还探讨了在植物中进行 GB 生物合成工程的潜力,以此作为增强植物抗 HM 胁迫能力的一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emerging role of osmoprotectant glycine betaine to mitigate heavy metals toxicity in plants: a systematic review.

Emerging role of osmoprotectant glycine betaine to mitigate heavy metals toxicity in plants: a systematic review.

Heavy metals (HMs) toxicity has become one of the major global issues and poses a serious threat to the environment in recent years. HM pollution in agricultural soil is caused by metal mining, smelting, volcanic activity, industrial discharges, and excessive use of phosphate fertilizers. HMs above a threshold level adversely affect the cellular metabolism of plants by producing reactive oxygen species (ROS), which attack cellular proteins. There are different mechanisms (physiological and morphological) adopted by plants to survive in the era of abiotic stress. Various osmoprotectants or compatible solutes, including amino acids, sugar, and betaines, enable the plants to counteract the HM stress. Glycine betaine (GB) is an effective osmolyte against HM stress among compatible solutes. GB has been shown to improve plant growth, photosynthesis, uptake of nutrients, and minimize oxidative stress in plants under HM stress. Additionally, GB increases the activity of antioxidant enzymes such as CAT (catalase), SOD (superoxide dismutase), and POD (peroxidase), which are effective in scavenging unwarranted ROS. Since not all species of plants can naturally produce or accumulate GB in response to stress, various approaches have been explored for introducing them. Plant hormones like salicylic acid, ABA (abscisic acid), and JA (jasmonic acid) co-ordinately stimulate the accumulation of GB inside the cell under HM stress. Apart from the exogenous application, the introduction of GB pathway genes in GB deficient species via genetic engineering also seems to be efficient in mediating HM stress. This review complied the beneficial effects of GB in mitigating HM stress and its role as a plant growth regulator. Additionally, the review explores the potential for engineering GB biosynthesis in plants as a strategy to bolster their resilience to HMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信