提高太阳能集热器热性能的策略

IF 4.3 3区 工程技术 Q1 MECHANICS
Bader Alshuraiaan
{"title":"提高太阳能集热器热性能的策略","authors":"Bader Alshuraiaan","doi":"10.1515/jnet-2023-0040","DOIUrl":null,"url":null,"abstract":"The paper evaluates a passive method for heat transfer improvement in heat exchangers, which implies the use of nanofluids. All calculations were carried out with a constant volumetric flow rate. The study examines three fluids with 0–4 % volume concentrations of CuO, MgO, and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particles. The results indicate an increase in the heat transfer coefficient with increasing temperature. An Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanofluid (4 % concentration) contributed to the best thermal performance. The incorporation of a 4 % content of MgO yielded an augmentation in heat transfer ranging from 15 % to 22 %, whereas an analogous concentration of CuO led to a more substantial enhancement of 25 %. Notably, the introduction of nanoparticles of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> produces a remarkable augmentation in heat transfer performance, with potential improvements of up to 36 %. The Nusselt number increases with increasing particle volume fraction and Reynolds number, according to results obtained for several nanoparticles (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, CuO, SiO<jats:sub>2</jats:sub>, and ZnO) with volume percentages in the range of 1–4 % and nanoparticle diameters of 25–70 nm. For all nanofluids, the time-averaged Nusselt number rises with a solid phase volume fraction increase of less than 5 %.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies to improve the thermal performance of solar collectors\",\"authors\":\"Bader Alshuraiaan\",\"doi\":\"10.1515/jnet-2023-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper evaluates a passive method for heat transfer improvement in heat exchangers, which implies the use of nanofluids. All calculations were carried out with a constant volumetric flow rate. The study examines three fluids with 0–4 % volume concentrations of CuO, MgO, and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particles. The results indicate an increase in the heat transfer coefficient with increasing temperature. An Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanofluid (4 % concentration) contributed to the best thermal performance. The incorporation of a 4 % content of MgO yielded an augmentation in heat transfer ranging from 15 % to 22 %, whereas an analogous concentration of CuO led to a more substantial enhancement of 25 %. Notably, the introduction of nanoparticles of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> produces a remarkable augmentation in heat transfer performance, with potential improvements of up to 36 %. The Nusselt number increases with increasing particle volume fraction and Reynolds number, according to results obtained for several nanoparticles (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, CuO, SiO<jats:sub>2</jats:sub>, and ZnO) with volume percentages in the range of 1–4 % and nanoparticle diameters of 25–70 nm. For all nanofluids, the time-averaged Nusselt number rises with a solid phase volume fraction increase of less than 5 %.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2023-0040\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0040","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文评估了一种用于改善热交换器传热的被动方法,这意味着纳米流体的使用。所有计算都是在恒定体积流量下进行的。研究考察了三种流体,其氧化铜、氧化镁和氧化铝颗粒的体积浓度分别为 0-4%。结果表明,传热系数随温度升高而增大。Al2O3 纳米流体(浓度为 4%)的热性能最佳。加入 4% 浓度的氧化镁后,传热系数提高了 15% 至 22%,而类似浓度的氧化铜则提高了 25%。值得注意的是,纳米 Al2O3 颗粒的引入显著提高了传热性能,其潜在改进幅度可达 36%。根据对几种纳米粒子(Al2O3、CuO、SiO2 和 ZnO)(体积百分比范围为 1-4%,纳米粒子直径为 25-70 nm)的研究结果,努塞尔特数随着粒子体积百分比和雷诺数的增加而增加。对于所有纳米流体,当固相体积分数增加小于 5%时,时间平均努塞尔特数都会上升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies to improve the thermal performance of solar collectors
The paper evaluates a passive method for heat transfer improvement in heat exchangers, which implies the use of nanofluids. All calculations were carried out with a constant volumetric flow rate. The study examines three fluids with 0–4 % volume concentrations of CuO, MgO, and Al2O3 particles. The results indicate an increase in the heat transfer coefficient with increasing temperature. An Al2O3 nanofluid (4 % concentration) contributed to the best thermal performance. The incorporation of a 4 % content of MgO yielded an augmentation in heat transfer ranging from 15 % to 22 %, whereas an analogous concentration of CuO led to a more substantial enhancement of 25 %. Notably, the introduction of nanoparticles of Al2O3 produces a remarkable augmentation in heat transfer performance, with potential improvements of up to 36 %. The Nusselt number increases with increasing particle volume fraction and Reynolds number, according to results obtained for several nanoparticles (Al2O3, CuO, SiO2, and ZnO) with volume percentages in the range of 1–4 % and nanoparticle diameters of 25–70 nm. For all nanofluids, the time-averaged Nusselt number rises with a solid phase volume fraction increase of less than 5 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信