学术讨论会:分形物质

IF 45.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Andrey Gromov, Leo Radzihovsky
{"title":"学术讨论会:分形物质","authors":"Andrey Gromov, Leo Radzihovsky","doi":"10.1103/revmodphys.96.011001","DOIUrl":null,"url":null,"abstract":"The burgeoning field of “fractons,” a class of models where quasiparticles are strictly immobile or display restricted mobility that can be understood through generalized multipolar symmetries and associated conservation laws, is reviewed. With a focus on merely a corner of this fast-growing subject, it is demonstrated how one class of such theories, symmetric tensor and coupled-vector gauge theories, surprisingly emerge from familiar elasticity of a two-dimensional quantum crystal. The disclination and dislocation crystal defects, respectively, map onto charges and dipoles of the fracton gauge theory. This fracton-elasticity duality leads to predictions of fractonic phases and quantum phase transitions to their descendants that are duals of the commensurate crystal, supersolid, smectic, and hexatic liquid crystals, as well as amorphous solids, quasicrystals, and elastic membranes. It is shown how these dual gauge theories provide a field-theoretic description of quantum melting transitions through a generalized Higgs mechanism. It is demonstrated how they can be equivalently constructed as gauged models with global multipole symmetries. Extensions of such gauge-elasticity dualities to generalized elasticity theories are expected to provide a route to the discovery of new fractonic models and their potential experimental realizations.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":null,"pages":null},"PeriodicalIF":45.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colloquium: Fracton matter\",\"authors\":\"Andrey Gromov, Leo Radzihovsky\",\"doi\":\"10.1103/revmodphys.96.011001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The burgeoning field of “fractons,” a class of models where quasiparticles are strictly immobile or display restricted mobility that can be understood through generalized multipolar symmetries and associated conservation laws, is reviewed. With a focus on merely a corner of this fast-growing subject, it is demonstrated how one class of such theories, symmetric tensor and coupled-vector gauge theories, surprisingly emerge from familiar elasticity of a two-dimensional quantum crystal. The disclination and dislocation crystal defects, respectively, map onto charges and dipoles of the fracton gauge theory. This fracton-elasticity duality leads to predictions of fractonic phases and quantum phase transitions to their descendants that are duals of the commensurate crystal, supersolid, smectic, and hexatic liquid crystals, as well as amorphous solids, quasicrystals, and elastic membranes. It is shown how these dual gauge theories provide a field-theoretic description of quantum melting transitions through a generalized Higgs mechanism. It is demonstrated how they can be equivalently constructed as gauged models with global multipole symmetries. Extensions of such gauge-elasticity dualities to generalized elasticity theories are expected to provide a route to the discovery of new fractonic models and their potential experimental realizations.\",\"PeriodicalId\":21172,\"journal\":{\"name\":\"Reviews of Modern Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":45.9000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Modern Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/revmodphys.96.011001\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.96.011001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本论文回顾了方兴未艾的 "分形子 "领域,这是一类准粒子严格不动或显示受限流动性的模型,可以通过广义多极对称性和相关守恒定律来理解。文章重点讨论了这一迅速发展的学科的一角,展示了这类理论中的一类--对称张量和耦合矢量规理论--是如何出人意料地从人们熟悉的二维量子晶体的弹性中产生的。晶体缺陷和位错分别映射到分形量规理论的电荷和偶极子上。这种分形-弹性二重性导致了对分形相及其后代的量子相变的预测,这些后代是对等晶体、超固态晶体、smectic 晶体、六方液晶以及无定形固体、准晶体和弹性膜的二重性。研究说明了这些双规理论如何通过广义希格斯机制对量子熔化转变进行场论描述。研究还证明了如何将它们等效地构建为具有全局多极对称性的规整模型。将这种规弹性对偶性扩展到广义弹性理论有望为发现新的分形模型及其潜在的实验实现提供一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Colloquium: Fracton matter

Colloquium: Fracton matter
The burgeoning field of “fractons,” a class of models where quasiparticles are strictly immobile or display restricted mobility that can be understood through generalized multipolar symmetries and associated conservation laws, is reviewed. With a focus on merely a corner of this fast-growing subject, it is demonstrated how one class of such theories, symmetric tensor and coupled-vector gauge theories, surprisingly emerge from familiar elasticity of a two-dimensional quantum crystal. The disclination and dislocation crystal defects, respectively, map onto charges and dipoles of the fracton gauge theory. This fracton-elasticity duality leads to predictions of fractonic phases and quantum phase transitions to their descendants that are duals of the commensurate crystal, supersolid, smectic, and hexatic liquid crystals, as well as amorphous solids, quasicrystals, and elastic membranes. It is shown how these dual gauge theories provide a field-theoretic description of quantum melting transitions through a generalized Higgs mechanism. It is demonstrated how they can be equivalently constructed as gauged models with global multipole symmetries. Extensions of such gauge-elasticity dualities to generalized elasticity theories are expected to provide a route to the discovery of new fractonic models and their potential experimental realizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Modern Physics
Reviews of Modern Physics 物理-物理:综合
CiteScore
76.20
自引率
0.70%
发文量
30
期刊介绍: Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信