{"title":"格拉斯曼流形手册:基本几何和计算方面","authors":"Thomas Bendokat, Ralf Zimmermann, P.-A. Absil","doi":"10.1007/s10444-023-10090-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Grassmann manifold of linear subspaces is important for the mathematical modelling of a multitude of applications, ranging from problems in machine learning, computer vision and image processing to low-rank matrix optimization problems, dynamic low-rank decompositions and model reduction. With this mostly expository work, we aim to provide a collection of the essential facts and formulae on the geometry of the Grassmann manifold in a fashion that is fit for tackling the aforementioned problems with matrix-based algorithms. Moreover, we expose the Grassmann geometry both from the approach of representing subspaces with orthogonal projectors and when viewed as a quotient space of the orthogonal group, where subspaces are identified as equivalence classes of (orthogonal) bases. This bridges the associated research tracks and allows for an easy transition between these two approaches. Original contributions include a modified algorithm for computing the Riemannian logarithm map on the Grassmannian that is advantageous numerically but also allows for a more elementary, yet more complete description of the cut locus and the conjugate points. We also derive a formula for parallel transport along geodesics in the orthogonal projector perspective, formulae for the derivative of the exponential map, as well as a formula for Jacobi fields vanishing at one point.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-023-10090-8.pdf","citationCount":"0","resultStr":"{\"title\":\"A Grassmann manifold handbook: basic geometry and computational aspects\",\"authors\":\"Thomas Bendokat, Ralf Zimmermann, P.-A. Absil\",\"doi\":\"10.1007/s10444-023-10090-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Grassmann manifold of linear subspaces is important for the mathematical modelling of a multitude of applications, ranging from problems in machine learning, computer vision and image processing to low-rank matrix optimization problems, dynamic low-rank decompositions and model reduction. With this mostly expository work, we aim to provide a collection of the essential facts and formulae on the geometry of the Grassmann manifold in a fashion that is fit for tackling the aforementioned problems with matrix-based algorithms. Moreover, we expose the Grassmann geometry both from the approach of representing subspaces with orthogonal projectors and when viewed as a quotient space of the orthogonal group, where subspaces are identified as equivalence classes of (orthogonal) bases. This bridges the associated research tracks and allows for an easy transition between these two approaches. Original contributions include a modified algorithm for computing the Riemannian logarithm map on the Grassmannian that is advantageous numerically but also allows for a more elementary, yet more complete description of the cut locus and the conjugate points. We also derive a formula for parallel transport along geodesics in the orthogonal projector perspective, formulae for the derivative of the exponential map, as well as a formula for Jacobi fields vanishing at one point.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10444-023-10090-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-023-10090-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-023-10090-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Grassmann manifold handbook: basic geometry and computational aspects
The Grassmann manifold of linear subspaces is important for the mathematical modelling of a multitude of applications, ranging from problems in machine learning, computer vision and image processing to low-rank matrix optimization problems, dynamic low-rank decompositions and model reduction. With this mostly expository work, we aim to provide a collection of the essential facts and formulae on the geometry of the Grassmann manifold in a fashion that is fit for tackling the aforementioned problems with matrix-based algorithms. Moreover, we expose the Grassmann geometry both from the approach of representing subspaces with orthogonal projectors and when viewed as a quotient space of the orthogonal group, where subspaces are identified as equivalence classes of (orthogonal) bases. This bridges the associated research tracks and allows for an easy transition between these two approaches. Original contributions include a modified algorithm for computing the Riemannian logarithm map on the Grassmannian that is advantageous numerically but also allows for a more elementary, yet more complete description of the cut locus and the conjugate points. We also derive a formula for parallel transport along geodesics in the orthogonal projector perspective, formulae for the derivative of the exponential map, as well as a formula for Jacobi fields vanishing at one point.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.