{"title":"钴-有机框架作为一种双功能电催化剂,通过电化学水分离实现可再生制氢","authors":"Eshagh Irandoost , Neda Sadat Barekati , Hossein Farsi , Alireza Farrokhi , Garren Horvath , Zhihai Li","doi":"10.1016/j.jaecs.2023.100240","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable hydrogen production by electrocatalytic water splitting is an attractive approach to establish a carbon–free future. On the other hand, the operationalization of this technology on a large scale requires the design and synthesis of efficient electrocatalysts to promote hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Metal–organic frameworks (MOFs) have provided new opportunities in the field of electrocatalytic water splitting due to their unique properties. Herein, we report an affordable, simple, and environmentally friendly strategy for the synthesis of Co<sub>3</sub>(BTC)<sub>2</sub> MOF electrocatalyst in distilled water at room temperature. Surprisingly, Co<sub>3</sub>(BTC)<sub>2</sub> demonstrated superior electrocatalytic activity toward HER and OER in alkaline media. The Co<sub>3</sub>(BTC)<sub>2</sub> requires overpotentials of 450 and 370mV for HER and OER to achieve a current density of 10mA cm<sup>−2</sup>, respectively.</p></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"17 ","pages":"Article 100240"},"PeriodicalIF":5.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666352X23001292/pdfft?md5=a887a03b173639043e0dad73d04cb5ec&pid=1-s2.0-S2666352X23001292-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cobalt–organic framework as a Bi–functional electrocatalyst for renewable hydrogen production by electrochemical water splitting\",\"authors\":\"Eshagh Irandoost , Neda Sadat Barekati , Hossein Farsi , Alireza Farrokhi , Garren Horvath , Zhihai Li\",\"doi\":\"10.1016/j.jaecs.2023.100240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainable hydrogen production by electrocatalytic water splitting is an attractive approach to establish a carbon–free future. On the other hand, the operationalization of this technology on a large scale requires the design and synthesis of efficient electrocatalysts to promote hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Metal–organic frameworks (MOFs) have provided new opportunities in the field of electrocatalytic water splitting due to their unique properties. Herein, we report an affordable, simple, and environmentally friendly strategy for the synthesis of Co<sub>3</sub>(BTC)<sub>2</sub> MOF electrocatalyst in distilled water at room temperature. Surprisingly, Co<sub>3</sub>(BTC)<sub>2</sub> demonstrated superior electrocatalytic activity toward HER and OER in alkaline media. The Co<sub>3</sub>(BTC)<sub>2</sub> requires overpotentials of 450 and 370mV for HER and OER to achieve a current density of 10mA cm<sup>−2</sup>, respectively.</p></div>\",\"PeriodicalId\":100104,\"journal\":{\"name\":\"Applications in Energy and Combustion Science\",\"volume\":\"17 \",\"pages\":\"Article 100240\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666352X23001292/pdfft?md5=a887a03b173639043e0dad73d04cb5ec&pid=1-s2.0-S2666352X23001292-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Energy and Combustion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666352X23001292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X23001292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
通过电催化水分离技术实现可持续制氢是实现无碳未来的一种极具吸引力的方法。另一方面,这项技术的大规模应用需要设计和合成高效的电催化剂,以促进氢进化反应(HER)和氧进化反应(OER)。金属有机框架(MOFs)因其独特的性质,为电催化水分离领域提供了新的机遇。在此,我们报告了一种在室温蒸馏水中合成 Co3(BTC)2 MOF 电催化剂的经济、简单且环保的策略。令人惊讶的是,Co3(BTC)2 在碱性介质中对 HER 和 OER 表现出了卓越的电催化活性。对于 HER 和 OER,Co3(BTC)2 分别需要 450 和 370mV 的过电位才能达到 10mA cm-2 的电流密度。
Cobalt–organic framework as a Bi–functional electrocatalyst for renewable hydrogen production by electrochemical water splitting
Sustainable hydrogen production by electrocatalytic water splitting is an attractive approach to establish a carbon–free future. On the other hand, the operationalization of this technology on a large scale requires the design and synthesis of efficient electrocatalysts to promote hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Metal–organic frameworks (MOFs) have provided new opportunities in the field of electrocatalytic water splitting due to their unique properties. Herein, we report an affordable, simple, and environmentally friendly strategy for the synthesis of Co3(BTC)2 MOF electrocatalyst in distilled water at room temperature. Surprisingly, Co3(BTC)2 demonstrated superior electrocatalytic activity toward HER and OER in alkaline media. The Co3(BTC)2 requires overpotentials of 450 and 370mV for HER and OER to achieve a current density of 10mA cm−2, respectively.